257 research outputs found

    Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy?

    Get PDF
    BACKGROUND: Transcriptome analysis shows that the chemotherapy innate resistance state of tumors is characterized by: poorly dividing tumor cells; an increased DNA repair; an increased drug efflux potential by ABC-transporters; and a dysfunctional ECM. Because chemotherapy resistance involves multiple genes, epigenetic-mediated changes could be the main force responsible of this phenotype. Our hypothesis deals with the potential role of epigenetic therapy for affecting the chemotherapy resistant phenotype of malignant tumors. PRESENTATION OF THE HYPOTHESIS: Recent studies reveal the involvement of DNA methylation and histone modifications in the reprogramming of the genome of mammalian cells in cancer. In this sense, it can be hypothesized that epigenetic reprogramming can participate in the establishment of an epigenetic mark associated with the chemotherapy resistant phenotype. If this were correct, then it could be expected that agents targeting DNA methylation and histone deacetylation would by reverting the epigenetic mark induce a global expression profile that mirror the observed in untreated resistant cells. TESTING THE HYPOTHESIS: It is proposed to perform a detailed analysis using all the available databases where the gene expression of primary tumors was analyzed and data correlated with the therapeutic outcome to determine whether a transcriptome profiling of "resistance" is observed. Assuming an epigenetic programming determines at some level the intrinsic resistant phenotype, then a similar pattern of gene expression dictated by an epigenetic mark should also be found in cell acquiring drug resistance. If these expectations are meet, then it should be further investigated at the genomic level whether these phenotypes are associated to certain patterns of DNA methylation and chromatin modification. Once confirmed the existence of an epigenetic mark associated to either the intrinsic or acquired chemotherapy resistant phenotype, then a causal association should be investigated. These preclinical findings should also be tested in a clinical setting. IMPLICATIONS OF THE HYPOTHESIS: Our hypothesis on the ability of epigenetic therapy to revert the epigenetic changes leading to a transcritome profile that defines the resistant state will eventually be a more rational and effective way to treat malignant tumors

    Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine

    Get PDF
    BACKGROUND: The development of resistance to cytotoxic chemotherapy continues to be a major obstacle for successful anticancer therapy. It has been shown that cells exposed to toxic concentrations of commonly used cancer chemotherapy agents develop DNA hypermetylation. Hence, demethylating agents could play a role in overcoming drug resistance. METHODS: MCF-7 cells were rendered adriamycin-resistant by weekly treatment with adriamycin. Wild-type and the resulting MCF-7/Adr cells were analyzed for global DNA methylation. DNA methyltransferase activity and DNA methyltransferase (dnmt) gene expression were also determined. MCF-7/Adr cells were then subjected to antisense targeting of dnmt1, -3a, and -b genes and to treatment with the DNA methylation inhibitor hydralazine to investigate whether DNA demethylation restores sensitivity to adriamycin. RESULTS: MCF-7/Adr cells exhibited the multi-drug resistant phenotype as demonstrated by adriamycin resistance, mdr1 gene over-expression, decreased intracellular accumulation of adriamycin, and cross-resistance to paclitaxel. The mdr phenotype was accompanied by global DNA hypermetylation, over-expression of dnmt genes, and increased DNA methyltransferase activity as compared with wild-type MCF-7 cells. DNA demethylation through antisense targeting of dnmts or hydralazine restored adriamycin sensitivity of MCF-7/Adr cells to a greater extent than verapamil, a known inhibitor of mdr protein, suggesting that DNA demethylation interferes with the epigenetic reprogramming that participates in the drug-resistant phenotype. CONCLUSION: We provide evidence that DNA hypermethylation is at least partly responsible for development of the multidrug-resistant phenotype in the MCF-7/Adr model and that hydralazine, a known DNA demethylating agent, can revert the resistant phenotype

    Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines

    Get PDF
    BACKGROUND: Among the epigenetic alterations occurring in cancer, DNA hypermethylation and histone hypoacetylation are the focus of intense research because their pharmacological inhibition has shown to produce antineoplastic activity in a variety of experimental models. The objective of this study was to evaluate the combined antineoplastic effect of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in a panel of cancer cell lines. RESULTS: Hydralazine showed no growth inhibitory effect on cervical, colon, breast, sarcoma, glioma, and head & neck cancer cell lines when used alone. On the contrary, valproic acid showed a strong growth inhibitory effect that is potentiated by hydralazine in some cell lines. Individually, hydralazine and valproic acid displayed distinctive effects upon global gene over-expression but the number of genes over-expressed increased when cells were treated with the combination. Treatment of HeLa cells with hydralazine and valproic acid lead to an increase in the cytotoxicity of gemcitabine, cisplatin and adriamycin. A higher antitumor effect of adriamycin was observed in mice xenografted with human fibrosarcoma cells when the animals were co-treated with hydralazine and valproic acid. CONCLUSION: Hydralazine and valproic acid, two widely used drugs for cardiovascular and neurological conditions respectively have promising antineoplastic effects when used concurrently and may increase the antitumor efficacy of current cytotoxic agents

    Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study

    Get PDF
    BACKGROUND: The development of cancer has been associated with epigenetic alterations such as aberrant histone deacetylase (HDAC) activity. It was recently reported that valproic acid is an effective inhibitor of histone deacetylases and as such induces tumor cell differentiation, apoptosis, or growth arrest. METHODS: Twelve newly diagnosed patients with cervical cancer were treated with magnesium valproate after a baseline tumor biopsy and blood sampling at the following dose levels (four patients each): 20 mg/kg; 30 mg/kg, or 40 mg/kg for 5 days via oral route. At day 6, tumor and blood sampling were repeated and the study protocol ended. Tumor acetylation of H3 and H4 histones and HDAC activity were evaluated by Western blot and colorimetric HDAC assay respectively. Blood levels of valproic acid were determined at day 6 once the steady-state was reached. Toxicity of treatment was evaluated at the end of study period. RESULTS: All patients completed the study medication. Mean daily dose for all patients was 1,890 mg. Corresponding means for the doses 20-, 30-, and 40-mg/kg were 1245, 2000, and 2425 mg, respectively. Depressed level of consciousness grade 2 was registered in nine patients. Ten patients were evaluated for H3 and H4 acetylation and HDAC activity. After treatment, we observed hyperacetylation of H3 and H4 in the tumors of nine and seven patients, respectively, whereas six patients demonstrated hyperacetylation of both histones. Serum levels of valproic acid ranged from 73.6–170.49 μg/mL. Tumor deacetylase activity decreased in eight patients (80%), whereas two had either no change or a mild increase. There was a statistically significant difference between pre and post-treatment values of HDAC activity (mean, 0.36 vs. 0.21, two-tailed t test p < 0.0264). There was no correlation between H3 and H4 tumor hyperacetylation with serum levels of valproic acid. CONCLUSION: Magnesium valproate at a dose between 20 and 40 mg/kg inhibits deacetylase activity and hyperacetylates histones in tumor tissues

    A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes

    Get PDF
    BACKGROUND: The antihypertensive compound hydralazine is a known demethylating agent. This phase I study evaluated the tolerability and its effects upon DNA methylation and gene reactivation in patients with untreated cervical cancer. METHODS: Hydralazine was administered to cohorts of 4 patients at the following dose levels: I) 50 mg/day, II) 75 mg/day, III) 100 mg/day and IV) 150 mg/day. Tumor biopsies and peripheral blood samples were taken the day before and after treatment. The genes APC, MGMT; ER, GSTP1, DAPK, RARβ, FHIT and p16 were evaluated pre and post-treatment for DNA promoter methylation and gene expression by MSP (Methylation-Specific PCR) and RT-PCR respectively in each of the tumor samples. Methylation of the imprinted H19 gene and the "normally methylated" sequence clone 1.2 was also analyzed. Global DNA methylation was analyzed by capillary electrophoresis and cytosine extension assay. Toxicity was evaluated using the NCI Common Toxicity Criteria. RESULTS: Hydralazine was well tolerated. Toxicities were mild being the most common nausea, dizziness, fatigue, headache and palpitations. Overall, 70% of the pretreatment samples and all the patients had at least one methylated gene. Rates of demethylation at the different dose levels were as follows: 50 mg/day, 40%; 75 mg/day, 52%, 100 mg/day, 43%, and 150 mg/day, 32%. Gene expression analysis showed only 12 informative cases, of these 9 (75%) re-expressed the gene. There was neither change in the methylation status of H19 and clone 1.2 nor changes in global DNA methylation. CONCLUSION: Hydralazine at doses between 50 and 150 mg/day is well tolerated and effective to demethylate and reactivate the expression of tumor suppressor genes without affecting global DNA methylatio

    Efficiency of bridging-sheet recruitment explains HIV-1 R5 envelope glycoprotein sensitivity to soluble CD4 and macrophage tropism

    Get PDF
    HIV-1 R5 viruses vary extensively in their capacity to infect macrophages. R5 viruses that confer efficient infection of macrophages are able to exploit low levels of CD4 for infection and predominate in brain tissue, where macrophages are a major target for infection. HIV-1 R5 founder viruses that are transmitted were reported to be non-macrophage-tropic. Here, we investigated the sensitivities of macrophage-tropic and non-macrophage-tropic R5 envelopes to neutralizing antibodies. We observed striking differences in the sensitivities of Env(+) pseudovirions to soluble CD4 (sCD4) and to neutralizing monoclonal antibodies (MAbs) that target the CD4 binding site. Macrophage-tropic R5 Envs were sensitive to sCD4, while non-macrophage-tropic Envs were significantly more resistant. In contrast, all Envs were sensitive to VRC01 regardless of tropism, while MAb b12 conferred an intermediate neutralization pattern where all the macrophage-tropic and about half of the non-macrophage-tropic Envs were sensitive. CD4, b12, and VRC01 share binding specificities on the outer domain of gp120. However, these antibodies differ in their ability to induce conformational changes on the trimeric envelope and in specificity for residues on the V1V2 loop stem and beta20-21 junction that are targets for CD4 in recruiting the bridging sheet. These distinct specificities of CD4, b12, and VRC01 likely explain the observed differences in Env sensitivity to inhibition by these reagents and provide an insight into the envelope mechanisms that control macrophage tropism. We present a model where the efficiency of bridging-sheet recruitment by CD4 is a major determinant of HIV-1 R5 envelope sensitivity to soluble CD4 and macrophage tropism

    HIV-1 R5 Macrophage-Tropic Envelope Glycoprotein Trimers Bind CD4 with High Affinity, while the CD4 Binding Site on Non-macrophage-tropic, T-Tropic R5 Envelopes Is Occluded

    Get PDF
    HIV-1 R5 variants exploit CCR5 as a coreceptor to infect both T cells and macrophages. R5 viruses that are transmitted or derived from immune tissue and peripheral blood are mainly inefficient at mediating infection of macrophages. In contrast, highly macrophage-tropic (mac-tropic) R5 viruses predominate in brain tissue and can be detected in cerebrospinal fluid but are infrequent in immune tissue or blood even in late disease. These mac-tropic R5 variants carry envelope glycoproteins (Envs) adapted to exploit low levels of CD4 on macrophages to induce infection. However, it is unclear whether this adaptation is conferred by an increased affinity of the Env trimer for CD4 or is mediated by postbinding structural rearrangements in the trimer that enhance the exposure of the coreceptor binding site and facilitate events leading to fusion and virus entry. In this study, we investigated CD4 binding to mac-tropic and non-mac-tropic Env trimers and showed that CD4-IgG binds efficiently to mac-tropic R5 Env trimers, while binding to non-mac-tropic trimers was undetectable. Our data indicated that the CD4 binding site (CD4bs) is highly occluded on Env trimers of non-mac-tropic R5 viruses. Such viruses may therefore infect T cells via viral synapses where Env and CD4 become highly concentrated. This environment will enable high-avidity interactions that overcome extremely low Env-CD4 affinities. IMPORTANCE HIV R5 variants bind to CD4 and CCR5 receptors on T cells and macrophages to initiate infection. Transmitted HIV variants infect T cells but not macrophages, and these viral strains persist in immune tissue even in late disease. Here we show that the binding site for CD4 present on HIV\u27s envelope protein is occluded on viruses replicating in immune tissue. This occlusion likely prevents antibody binding to this site and neutralization of the virus, but it makes it difficult for virus-CD4 interactions to occur. Such viruses probably pass from T cell to T cell via cell contacts where CD4 is highly concentrated and allows infection via inefficient envelope-CD4 binding. Our data are highly relevant for vaccines that aim to induce antibodies targeting the CD4 binding site on the envelope protein

    Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in Thyroid Neoplasms and Their Clinicopathological Correlation

    Get PDF
    To evaluate the expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in thyroid neoplasms in a Korean population, we studied a total of 154 cases: papillary carcinoma of classical type (PTC), 86; follicular adenoma (FA), 21; follicular carcinoma (FC), 35; medullary carcinoma (MC), 3; undifferentiated carcinoma (UC), 5; and Hurthle cell neoplasm (HN), 4. Using immunohistochemical staining, COX-2 expression was detected in 62 (72.1%) PTC specimens, 5 (23.8%) FA specimens, 10 (28.6%) FC specimens, 0 (0.0%) MC specimens, 1 (20.0%) UC specimen, and 3 (75%) HN specimens. iNOS expression was detected in 66 (76.7%) PTC specimens, 4 (19.0%) FA specimens, 13 (37.1%) FC specimens, 0 (0.0%) MC specimens, 3 (60.0%) UC specimens, and 4 (100%) HN specimens. The results showed that COX-2 and iNOS were frequently expressed in the PTC and HN specimens, and iNOS was more frequently overexpressed in the FC specimens than in the FA specimens. In PTC, COX-2 and iNOS were significantly overexpressed in patients over 45 yr of age (p=0.029, p=0.041), and iNOS expression was increased in patients with a large primary tumor (p=0.028). These results suggest that the upregulation of COX-2 and iNOS may contribute to the tumor progression of thyroid gland, particularly in PTC and HN, and iNOS may play an adjuvant role during the tumor progression of FC

    Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults.

    Get PDF
    Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions
    corecore