441 research outputs found

    Query-driven document partitioning and collection selection

    Get PDF
    Abstract — We present a novel strategy to partition a document collection onto several servers and to perform effective collection selection. The method is based on the analysis of query logs. We proposed a novel document representation called query-vectors model. Each document is represented as a list recording the queries for which the document itself is a match, along with their ranks. To both partition the collection and build the collection selection function, we co-cluster queries and documents. The document clusters are then assigned to the underlying IR servers, while the query clusters represent queries that return similar results, and are used for collection selection. We show that this document partition strategy greatly boosts the performance of standard collection selection algorithms, including CORI, w.r.t. a round-robin assignment. Secondly, we show that performing collection selection by matching the query to the existing query clusters and successively choosing only one server, we reach an average precision-at-5 up to 1.74 and we constantly improve CORI precision of a factor between 11 % and 15%. As a side result we show a way to select rarely asked-for documents. Separating these documents from the rest of the collection allows the indexer to produce a more compact index containing only relevant documents that are likely to be requested in the future. In our tests, around 52 % of the documents (3,128,366) are not returned among the first 100 top-ranked results of any query. I

    Mammalian aquaglyceroporin function in metabolism

    Get PDF
    AbstractAquaglyceroporins are integral membrane proteins that are permeable to glycerol as well as water. The movement of glycerol from a tissue/organ to the plasma and vice versa requires the presence of different aquaglyceroporins that can regulate the entrance or the exit of glycerol across the plasma membrane. Actually, different aquaglyceroporins have been discovered in the adipose tissue, small intestine, liver, kidney, heart, skeletal muscle, endocrine pancreas and capillary endothelium, and their differential expression could be related to obesity and the type 2 diabetes.Here we describe the expression and function of different aquaglyceroporins in physiological condition and in obesity and type 2 diabetes, suggesting they are potential therapeutic targets for metabolic disorders

    Component metadata management and publication for the grid

    Full text link
    There is growing attention to component-oriented software design of Grid applications. Within this framework, applications are built by assembling together independently developed software components. Two main approaches are commonly used to manage, develop and publish software components: one is based on an Interface Description Language (IDL); the other is typical, for instance, of Java and is based on introspection and design conventions. In this paper, we compare them and we propose a third approach that merges the flexibility and fast learning curve of the latter, with the rigor of the former. Our proposal is meant to help the transition towards more modern tools, which is required to develop versatile Grid applications. © 2005 IEEE

    04451 Abstracts Collection -- Future Generation Grids

    Get PDF
    The Dagstuhl Seminar 04451 "Future Generation Grid" was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl from 1st to 5th November 2004. The focus of the seminar was on open problems and future challenges in the design of next generation Grid systems. A total of 45 participants presented their current projects, research plans, and new ideas in the area of Grid technologies. Several evening sessions with vivid discussions on future trends complemented the talks. This report gives an overview of the background and the findings of the seminar

    Propolis induces AQP3 expression: A possible way of action in wound healing

    Get PDF
    Propolis is the generic name of a complex of resinous compound collected by honeybees and it has been utilized for many years in folk medicine. As other products generated by honeybees (such as royal jelly, pollen, honey), propolis has great therapeutic properties, but very little scientific information is available. Therefore, this study was aimed at exploring the potential wound healing properties of propolis. To that end, we utilized an in vitro scratch wound healing model consisting of human immortalized keratinocytes. Our scratch wound data clearly demonstrated that propolis induced a pronounced increase in the wound repair abilities of keratinocytes. A cell migration assay showed that propolis stimulated keratinocytes to close the wound. We revealed the role of H2O2 as the main mediator of propolis regenerative properties. We showed that this extracellularly released H2O2 could pass across the plasma membrane through a specific aquaporin (i.e., AQP3) modulating intracellular responses. The data offer a biological characterization of propolis positive effects suggesting that propolis could also be utilized in wound treatment within clinical settings

    Expression and Localization of Ryanodine Receptors in the Frog Semicircular Canal

    Get PDF
    Several experiments suggest an important role for store-released Ca2+ in hair cell organs: drugs targeting IP3 and ryanodine (RyRs) receptors affect release from hair cells, and stores are thought to be involved in vesicle recycling at ribbon synapses. In this work we investigated the semicircular canal distribution of RyRs by immunofluorescence, using slice preparations of the sensory epithelium (to distinguish cell types) and flat mounts of the simpler nonsensory regions. RyRs were present in hair cells, mostly in supranuclear spots, but not in supporting cells; as regards nonsensory regions, they were also localized in dark cells and cells from the ductus. No labeling was found in nerve terminals, although nerve branches could be observed in proximity to hair cell RyR spots. The differential expression of RyR isoforms was studied by RT-PCR and immunoblotting, showing the presence of RyRα in both ampulla and canal arm and RyRβ in the ampulla only

    Non-Linear Frequency Dependence of Neurovascular Coupling in the Cerebellar Cortex Implies Vasodilation-Vasoconstriction Competition

    Get PDF
    Neurovascular coupling (NVC) is the process associating local cerebral blood flow (CBF) to neuronal activity (NA). Although NVC provides the basis for the blood oxygen level dependent (BOLD) effect used in functional MRI (fMRI), the relationship between NVC and NA is still unclear. Since recent studies reported cerebellar non-linearities in BOLD signals during motor tasks execution, we investigated the NVC/NA relationship using a range of input frequencies in acute mouse cerebellar slices of vermis and hemisphere. The capillary diameter increased in response to mossy fiber activation in the 6-300 Hz range, with a marked inflection around 50 Hz (vermis) and 100 Hz (hemisphere). The corresponding NA was recorded using high-density multi-electrode arrays and correlated to capillary dynamics through a computational model dissecting the main components of granular layer activity. Here, NVC is known to involve a balance between the NMDAR-NO pathway driving vasodilation and the mGluRs-20HETE pathway driving vasoconstriction. Simulations showed that the NMDAR-mediated component of NA was sufficient to explain the time course of the capillary dilation but not its non-linear frequency dependence, suggesting that the mGluRs-20HETE pathway plays a role at intermediate frequencies. These parallel control pathways imply a vasodilation-vasoconstriction competition hypothesis that could adapt local hemodynamics at the microscale bearing implications for fMRI signals interpretation

    Aquaporin-6 is expressed along the rat gastrointestinal tract and upregulated by feeding in the small intestine

    Get PDF
    Background: Several aquaporins (a family of integral membrane proteins) have been recently identified in the mammalian gastrointestinal tract, and their involvement in the movement of fluid and small solutes has been suggested. In this direction we investigated, in some regions of the rat gastrointestinal tract, the presence and localization of aquaporin-6, given its peculiar function as an ion selective channel. Results: RT-PCR and immunoblotting experiments showed that aquaporin-6 was expressed in all the investigated portions of the rat gastrointestinal tract. The RT-PCR experiments showed that aquaporin-6 transcript was highly expressed in small intestine and rectum, and less in stomach, caecum and colon. In addition, jejunal mRNA expression was specifically stimulated by feeding. Immunoblotting analysis showed a major band with a molecular weight of about 55 kDa corresponding to the aquaporin-6 protein dimer; this band was stronger in the stomach and large intestine than in the small intestine. Immunoblotting analysis of brush border membrane vesicle preparations showed an intense signal for aquaporin-6 protein. The results of in situ hybridization experiments demonstrate that aquaporin-6 transcript is present in the isthmus, neck and basal regions of the stomach lining, and throughout the crypt-villus axis in both small and large intestine. In the latter regions, immunohistochemistry revealed strong aquaporin-6 labelling in the apical membrane of the surface epithelial cells, while weak or no labelling was observed in the crypt cells. In the stomach, an intense staining was observed in mucous neck cells and lower signal in principal cells and some parietal cells. Conclusion: The results indicate that aquaporin-6 is distributed throughout the gastrointestinal tract. Aquaporin-6 localization at the apical pole of the superficial epithelial cells and its upregulation by feeding suggest that it may be involved in movements of water and anions through the epithelium of the villi

    Aquaporin-6 Expression in the Cochlear Sensory Epithelium Is Downregulated by Salicylates

    Get PDF
    We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses
    corecore