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Serum profile changes in 
postpartum women with a history 
of childhood maltreatment: a 
combined metabolite and lipid 
fingerprinting study
Alexandra M Koenig   1, Alexander Karabatsiakis 1, Thomas Stoll 2, Sarah Wilker 1, 
Thomas Hennessy2,3, Michelle M Hill 2 & Iris-Tatjana Kolassa 1

Childhood maltreatment (CM) can increase the risk of adverse health consequences in adulthood. 
A deeper insight in underlying biological pathways would be of high clinical relevance for early 
detection and intervention. The untargeted investigation of all detectable metabolites and lipids in 
biological samples represents a promising new avenue to identify so far unknown biological pathways 
associated with CM. Using an untargeted approach, liquid chromatography-mass spectrometry (LC-
MS) was performed on peripheral blood serum samples collected three months postpartum from 105 
women with varying degrees of CM exposure. Comprehensive univariate and multivariate statistical 
analyses consistently identified eight biomarker candidates putatively belonging to antioxidant-, 
lipid-, and endocannabinoid-associated pathways, which differentiated between women with and 
without CM. Classification algorithms allowed for clear prediction of the CM status with high accuracy 
scores (~80–90%). Similar results were obtained when excluding all women with a lifetime psychiatric 
diagnosis. In order to confirm the identities of these promising biomarker candidates, LC-MS/MS 
analysis was applied, confirming one of the metabolites as bilirubin IXa, a potent antioxidant with 
immunomodulatory properties. In sum, our results suggest novel pathways that could explain long-
term effects of CM on health and disease by influencing biological patterns associated with energy 
metabolism, inflammation, and oxidative stress.

Cumulative early life stress increases the risk for long-term adverse consequences on mental and physical health 
and thus represents a central societal challenge. Individuals with experiences of childhood maltreatment (CM), 
including abuse and neglect, report a poorer life quality and overall health1 and are at higher risk to develop psy-
chopathologies such as major depressive disorder (MDD) or posttraumatic stress disorder (PTSD). Over one-half 
of MDD and PTSD cases are potentially attributable to self-reported CM2. A deeper understanding of the under-
lying biological mechanisms, which determine health and disease outcomes following CM experiences, is of 
highest clinical interest3. To enable preventive interventions for individuals at high risk for adverse long-term 
consequences of chronic and traumatic stress associated with CM, the identification of biological entities in the 
form of a “biomolecular marker panel” is needed.

Several recent genome-wide epigenetic studies investigated methylation changes in DNA prepared from 
blood4,5, buccal epithelial samples6, hippocampal tissue7, or saliva8 from participants with CM and matched con-
trols. These studies all showed wide-spread epigenetic changes in CM participants, impacting diverse pathways 
relevant to health risks associated with CM, such as neuronal development and organismal growth6, cellular/
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neuronal plasticity7, transcriptional regulation/development4, various cancers, signaling and inflammatory path-
ways8. While these studies reveal potential epigenetic mechanisms of increased health risks following CM expo-
sure, there are limited reports on the physiological and biochemical processes associated with CM.

The majority of previous research on the biochemical processes in CM primarily employed hypothesis-driven 
pathway investigations9, thereby neglecting potentially complex risk and resilience pathways related to CM. The 
individual biochemical fingerprint represents the complex interplay of the genetic make-up, and environmentally 
shaped gene and protein expression of a person10, and provides the highest resolution to assess metabolic changes 
associated with pathophysiological conditions at a certain point in time. For this reason, metabolomics might be 
able to contribute to the elucidation of gene-environment interactions11 leading to a better understanding of the 
biological and psychosomatic consequences of early life stress.

Metabolomics is the science of the human metabolome comprising the total of small hydrophilic (metabolites), 
amphiphilic (fatty acids), and lipophilic (lipids) bioactive molecules present in cells, tissues, organs, and biological 
fluids, which display direct signatures of biochemical activity12. Untargeted metabolomics, also termed metabolite 
fingerprinting, encompasses the relative quantification of all detectable metabolites in a given biological sample 
by mass spectrometry.

Traditionally, human metabolomics research addressed somatic conditions such as drug response10, diseases 
of the central nervous system (e.g.13,14), cancer15, or aging16. Only a limited number of studies has been conducted 
that applied untargeted metabolomics in the field of psychiatry, in particular on schizophrenia and MDD (see 
refs11,17 for an overview). A few recent studies investigated the metabolite profiles of autism18, bipolar disorder19, 
PTSD20, and smoking behavior21. To the best of our knowledge, the impact of early life stress on the human 
metabolome has been reported in one study22. Ding and colleagues (2014) discovered a distinct plasma diagnostic 
metabolite marker panel in depressed patients with a history of early life stress compared to depressive patients 
without such experiences and healthy individuals. However, there are no published studies on the metabolomic 
signature of CM experiences in healthy adult subjects.

In a cohort of postpartum women, this study applied a biomarker discovery approach employing untargeted 
mass spectrometry-based metabolomics for both metabolites and lipids to unravel novel serum biomarkers for 
CM.

Results
A subset of 105 serum samples from the “My Childhood – Your Childhood” project was selected for the current 
analysis (see Supplementary Methods for more details). According to the cut-off criteria of the Childhood Trauma 
Questionnaire (CTQ)23,24, we divided the samples into two groups (see Table 1 for descriptive characteristics): 
a control group including 46 women without CM experiences (CM−) and a group with 59 women reporting 
a history of at least mild up to severe maltreatment in childhood (CM+). The metabolite and lipid fractions 
were extracted from serum samples and analyzed by a high-resolution accurate-mass QTOF UHPLC/MS system, 
which is increasingly considered as the reference platform for metabolomics25. Accurate mass data which matched 
to the METLIN Metabolomics Database (The Scripps Research Institute, USA) was filtered for known endoge-
nous metabolites and lipids, and then by detection in a minimum 50% of samples in each group. Ultimately, 398 
compounds (ions with a specific retention time and mass-to-charge ratio) were selected for extensive statistical 
analysis to discover a biomarker signature that can distinguish CM+ from CM− (see Supplementary Table S1 for 
a list in alphabetical order). In addition, compound identification using tandem mass spectrometry (LC-MS/MS) 
was applied (see Supplementary Methods).

Biomarker signature development: Univariate statistics.  A combination of univariate (group com-
parisons & correlations) and multivariate methods (classification algorithms) was performed26. The univariate 
comparison of women with and without CM revealed 37 compounds as potential biomarker candidates with an 
original p value of ≤0.05. Eight of these metabolites met the False Discovery Rate (FDR)27 criterion of ≤0.10, 
thus survived multiple testing correction and should be seen as most important (see Table 2). Three compounds 
were increased and five compounds were decreased in the CM group compared to the control group. According 
to METLIN database, bilirubin IXa, the prostaglandin PGH2-EA, and the glycerolipid DG(18:0/20:3/0:0) match 
the accurate mass of the compounds that were found to be increased in the CM group, while ubiquinone 8 and 
the glycerophospholipids PA(O-18:0/12:0), PC(O-18:0/20:0), PI(20:0/20:4), and PI(22:2/20:5) match the accurate 
mass of the compounds that were observed to be decreased in the CM group.

In addition, the abundance of two accurate mass-matched compounds correlated significantly with the cumu-
lative score of CM experiences (CTQ sum score, representing maltreatment load)28, even after multiple testing 
correction: phosphatidylcholine PC(O-18:0/20:0) (Kendall’s τ = −0.37, p < 0.001, FDR <0.001) and ubiquinone 
8, also known as coenzyme Q8, (Kendall’s τ = −0.36, p < 0.001, FDR <0.01). However, all these accurate mass 
matches require structural validation for compound identification.

Biomarker signature development: Multivariate statistics.  In contrast to univariate approaches, 
multivariate classification algorithms have the advantages that they take the multivariate nature of the data into 
account, do not have to consider corrections for multiple comparisons, and can hence investigate patterns of cor-
related metabolites, which are related to CM. By simultaneously investigating a large set of metabolites, they can 
identify the best biomolecular panel differentiating between women with and without CM. We applied two mul-
tivariate classification algorithms: Partial Least Square Discriminant Analysis (PLS-DA), combining dimension 
reduction and classification approaches, as the state of the art classification method in metabolomics science, and 
Random Forests embedded in a Conditional Inference framework (RF-CI) as an alternative method with higher 
performance in variable selection (29; for a detailed description see Supplementary Methods). Both methods are 
particularly suited for the multivariate data structure and can handle highly inter-correlated predictors (as is the 
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case for metabolites). Combining these two methods in a complementary approach was suggested in the litera-
ture29,30. The study cohort was randomly separated to a training set (3/4 of whole sample; Ntrain = 79 with 46 CM+ 
and 33 CM−) and a validation set (1/4 of whole sample; Nvalidation = 26 with 13 CM+ and 13 CM−), which did not 
differ significantly in demographic and clinical characteristics (all p values > 0.05). The following indicators for 
significance of a metabolite in differentiating between the absence and presence of a history of CM were calcu-
lated: variable importance in projection (VIP) scores in PLS-DA and conditional variable importance (cvi) values, 
representing the averaged mean decrease in accuracy in RF-CI.

A PLS-DA model with three components (see Supplementary Table S2) and 69 metabolites exceeding a VIP 
threshold of 1.2 was identified as the most suitable model as indicated by the best accuracy, the second best 
sensitivity, and the best specificity in a 10-fold, 1000 repeated cross-validation procedure in the training set (see 
Supplementary Figure S3). The application of the PLS-DA model with these 69 selected metabolites (see Table 3 
for the first 30 metabolites with the highest VIP scores) predicted a history of CM in the validation set with an 
accuracy of 80.8%, a sensitivity of 76.9% and a specificity of 84.6%. The separation of the CM and the control 
group in the validation set based on three components comprising 69 metabolites is shown in Fig. 1A.

Whole study cohort
(N = 105)

CM group
(N = 59)

Control group
(N = 46) Statisticg

Age in years, M ± SD 32.89 ± 3.99 33.14 ± 3.88 32.57 ± 4.15 t(103) = −0.73, p = 0.47

German origin: yes, n (%) 91 (87) 49 (83) 42 (91) p = 0.26

Married: yes, n (%)a 83 (79) 48 (82) 35 (76) p = 0.53

Academic education: yes, n (%) 73 (69) 38 (64) 35 (76) p = 0.19

Living index (rooms/persons ratio)a, 
M ± SD 1.28 ± 0.47 1.25 ± 0.52 1.31 ± 0.39 W = 1566, p = 0.12

Number of childrena, M ± SD 1.62 ± 0.79 1.66 ± 0.76 1.57 ± 0.83 W = 1202, p = 0.34

Body mass indexa, M ± SD 23.69 ± 2.98 23.92 ± 3.26 23.41 ± 2.61 t(102) = −0.85, p = 0.40

Chronical diseases, n (%)a,b 33 (31) 20 (34) 13 (28) p = 0.53

Thyroid disease, n (%) 21 (20) 11 (19) 10 (22) p = 0.81

Asthma, n (%) 6 (6) 4 (7) 2 (4) p = 0.69

Taken medication at the day of 
blood sampling: yes, n (%)b 38 (36) 22 (37) 16 (35) p = 0.84

Levothyroxin, n (%) 21 (20) 11 (19) 10 (22) p = 0.81

Nutritional supplement, n (%) 10 (10) 7 (12) 3 (7) p = 0.51

Contraceptive, n (%) 7 (7) 1 (2) 6 (13) p = 0.04

Analgesic, n (%) 4 (4) 3 (5) 1 (2) p = 0.63

Asthma inhaler, n (%) 2 (2) 2 (3) 0 (0) p = 0.51

Diagnosis of psychiatric disorder 
lifetime (self-reported): yes, n (%)c,d 11 (10) 11 (19) 0 (0) p < 0.001

Diagnosis of psychiatric disorder 
lifetime (SCID-I): yes, n (%)e 25 (24) 25 (42) 0 (0) p < 0.001

Psychotropic medication lifetime: 
yes, n (%)c,f 23 (22) 20 (34) 3 (7) p < 0.001

Psychotherapy lifetime: yes, n (%)c 25 (24) 19 (32) 6 (13) p = 0.02

CTQ sum score, M ± SD 34.47 ± 10.19 39.93 ± 10.65 27.46 ± 2.13 W = 66.5, p < 0.001

Women with at least mild CM experiences in the following subscales, n (%)

Emotional abuse 23 (21) 23 (39) 0 (0) p < 0.001

Physical abuse 12 (11) 12 (20) 0 (0) p < 0.001

Sexual abuse 14 (13) 14 (24) 0 (0) p < 0.001

Emotional neglect 43 (41) 43 (73) 0 (0) p < 0.001

Physical neglect 14 (13) 14 (24) 0 (0) p < 0.001

Table 1.  Demographic and clinical characteristics of women with and without childhood maltreatment history. 
CM = childhood maltreatment; CTQ = Childhood Trauma Questionnaire23,24; SCID-I = Structured Clinical 
Interview55. aMissing data for one woman of the CM group. bOnly chronical diseases or taken medication with 
more than one occurrence are displayed. cMissing data for two women of the CM group. dSelf-reported lifetime 
psychiatric diagnoses: major depressive disorder (MDD; N = 4), anxiety disorders (N = 3), other diagnoses with 
one occurrence each (anorexia, adjustment disorder; comorbid: bulimia & PTSD, anxiety disorder & MDD). 
eIn SCID-I interview diagnosed lifetime psychiatric diagnoses according to DSM5 criteria: MDD (N = 4), 
anxiety disorders (N = 11), alcohol use disorder (N = 2); comorbid diagnoses: MDD & anxiety disorder (N = 2), 
MDD & PTSD & anxiety disorder (N = 2), MDD & PTSD (N = 1), MDD & alcohol use disorder (N = 1), MDD 
& stimulant use disorder (N = 1), MDD & social phobia & obsessive-compulsive disorder (N = 1). fLifetime 
psychotropic medication with more than one occurrence: Hypericum perforatum (N = 7 in CM group), 
Valeriana (N = 3 in CM group), Lorazepam (N = 3 in CM group, N = 1 in control group). gFor normally 
distributed continuous data t-test is presented, if residuals were not normally distributed Mann-Whitney-U-test 
is displayed, and for categorical data Fisher’s exact test.
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In order to enhance a potential clinical application, we further chose a more economical PLS-DA model with 
a higher VIP threshold. According to the performance criteria, a model with a VIP threshold of 2.5 consisting 
of only six metabolites – which also showed significant group comparisons after multiple testing correction in 
the univariate analyses – appeared as the best choice out of different economical models (see Supplementary 
Figure S3). This more economical model revealed an accuracy of 88.5%, a sensitivity of 92.3% and a specificity 
of 84.6% in the class membership prediction of the validation set (see also Fig. 1B), and consequently performed 
better in the validation set than the previously described PLS-DA model with 69 metabolites.

The calculation of 101 random forests, including all 398 candidates matched to endogenous biomolecules, 
predicted the class membership of all women in the validation set with an accuracy of 80.8%, a sensitivity of 
92.3% and a specificity of 69.2%. The cvi values for the first 30 top-ranked metabolites are presented in Table 3.

According to the fitted models, the two metabolites database-matched by accurate mass as phosphatidylcho-
line PC(O-18:0/20:0) and ubiquinone 8 showed the highest variable importance scores in PLS-DA (VIP(PE) = 3.56 
and VIP(U8) = 3.12) and in RF-CI (cvi(PE) = 4.9% and cvi(U8) = 1.6%) predicting past exposure to CM. To evaluate 
their single predictive accuracy, logistic regression analyses were applied. PC(O-18:0/20:0) predicted a history of 
CM in the validation set with an accuracy of 88.5%, a sensitivity of 92.3% and a specificity of 84.6%. The candidate 
molecule ubiquinone 8 showed accuracy, sensitivity and specificity values of 84.6% each.

According to variable importance scores VIP and cvi, biomolecule candidates were ranked. Comparing the 
top 30 metabolites of PLS-DA and RF-CI unveiled an overlap of 20 molecules (see Table 3) with the candidate 
metabolites with monoisotopic mass 803.6784 Da and retention time 8.65 min (METLIN-matched to the glyc-
erophosphatidylcholine PC(O-18:0/20:0)) as well as with monoisotopic mass 726.5553 Da and retention time 
8.65 min (METLIN-match: ubiquinone 8) displaying the greatest importance in the prediction of CM in both 
methods.

Structural identification of candidate biomarkers by MS/MS.  In the next step, we investigated the 
identity of the set of eight metabolite candidates shown to be significant in both the univariate and the multi-
variate approaches using tandem mass spectrometry (MS/MS): bilirubin IXa, PGH2-EA, ubiquinone 8, PA(O-
18:0/12:0), PC(O-18:0/20:0), PI(20:0/20:4), PI(22:2/20:5), and DG(18:0/20:3/0:0). MS-DIAL (version 2.54)31 was 
used to compare MS/MS fragmentation data obtained from LC-MS/MS runs at fixed collision energies (10, 20, 
40 V) against in-built MS/MS reference library LipidBlast. In addition, selected metabolite fragmentation infor-
mation was directly exported from MS-DIAL into MS-Finder (version 2.10)32 for further spectra comparison. 
MS-FINDER predicts molecular formulas based on MS information and retrieves isomer structures from metab-
olome databases (including HMDB, PubChem, ChEBi) to predict MS/MS spectra in-silico. Of the eight com-
pounds targeted for MS/MS, three compounds (bilirubin IXa; ubiquinone 8; PC(O-18:0/20:0)) showed confident 
spectra similarities. In a last step, commercially available compounds were obtained for two metabolites (bilirubin 
IXa and ubiquinone 8). Comparison of the pure compound LC-MS/MS to our experimental LC-MS/MS con-
firmed the identification of bilirubin IXa (Fig. 2), but not ubiquinone 8. The identity of the candidate metabolite 
with monoisotopic mass 726.5553 Da and retention time 8.65 min, which was METLIN-matched to ubiquinone 
8, and all of the other METLIN-matched candidates remain to be confirmed in future studies.

Discussion
Combining the strengths of univariate and multivariate statistical approaches, we demonstrated for the first 
time the potential to elaborate serum-based biomolecular signature of CM experiences. In terms of a biomarker 
discovery approach, this study revealed novel antioxidant-, lipid- and endocannabinoid-associated pathways 
potentially related to the adverse health consequences of CM that were present even decades after CM exposure. 
Previously intensively investigated biomarkers for CM such as cortisol33 and kynurenine34 were measured, but 
had no discriminative power in our study (data not shown). Group differences in the abundance scores of the 
metabolites between women with and without CM experiences were found for eight biomolecule candidates (see 
Table 2). With regard to a potential dose-response-relationship, significant relationships between two biomol-
ecule candidates (METLIN-matched to PC(O-18:0/20:0) and ubiquinone 8) and maltreatment load could be 
shown suggesting a cumulative effect of CM experiences on the human metabolic fingerprint.

In order to focus additionally on the high inter-correlations between metabolites and lipids and their orches-
trated effects, a complementary approach combining PLS-DA and RF-CI was chosen to determine the best bio-
molecular panel with the highest power in discriminating women with and without CM experiences in a selected 
training set. Subsequently, the resultant PLS-DA and random forest models were evaluated in an independent 
validation set.

The RF-CI model including all 398 metabolite candidates leads to an overall good prediction of CM with a high 
percentage of women with CM experiences correctly categorized, but a rather low percentage of women with-
out CM experiences correctly assigned. Following the cross-validation procedure in PLS-DA, the 3-component 
model with 69 metabolites showed the best performance criteria in predicting the group assignment of the train-
ing set. The evaluation of this model in the independent validation set resulted in the same predictive accuracy 
as the RF-CI model, but with higher specificity at the expense of poorer sensitivity. In the validation set, the most 
economical model with only the candidate metabolite with monoisotopic mass 803.6784 Da and retention time 
8.65 min (METLIN-match: PC(O-18:0/20:0)) as a predictor produced the best performance criteria (accuracy, 
sensitivity, specificity) regarding the differentiation of women with and without CM experiences.

Collectively, univariate and multivariate results revealed a total of eight candidates that are individually signif-
icant after adjusting for multiple comparisons with FDR, and ranked top 30 in variable importance scores of the 
full PLS-DA and RF-CI models. One of these candidates increased in the CM group was structurally validated 
as bilirubin. In general, unconjugated bilirubin, as part of the heme metabolism, is a potent antioxidant with 
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immunomodulatory properties35. Further, previous studies showed that bilirubin inhibits the synthesis of reactive 
oxygen species in vascular cells and thereby potentially prevents CM-associated diseases such as coronary heart 
disease36. Higher levels of serum bilirubin were also found for post-stroke depression and were interpreted to 
reflect the intensity of initial oxidative stress37. Metabolite profiling in PTSD suggested bilirubin as potential bio-
marker differentiating between PTSD cases and controls20. In line with these results, the current findings support 
an involvement of bilirubin after CM experiences by potentially counteracting the adverse effects of oxidative 
stress.

According to accurate mass matching of METLIN database, four of the eight significantly altered metabolites 
belong to the glycerophospholipid class of lipids, and were all decreased in CM. Lipids are important structural 
components of cellular membranes, but also participate in cellular signaling and energy storage38. In line with 
our results, recent studies found altered lipid levels for stress-related psychiatric disorders, such as MDD39,40 and 
PTSD20. The molecular identities of these candidate lipids remain to be verified.

Although structural confirmation is pending, this study also revealed a significant elevation of a compound 
matched to PGH2-EA by accurate mass. PGH2-EA is part of the endocannabinoid inactivating pathway, and can 
result from the oxidation of endocannabinoid anandamide (AEA) by cyclooxygenase-241,42. AEA has been shown 
to exhibit neuroprotective, anti-inflammatory43, but also neurotoxic effects that in turn lead to potential proin-
flammatory responses in metabolism44.

While further investigation is required to confirm PGH2-EA increase in individuals with CM, and the impact 
of increased PGH2-EA on endocannabinoid turnover, changes in this pathway have broad impact on health. In 
general, the interplay between endocannabinoid biosynthesis and inactivation determines the endocannabinoid 
system activity42, which in turn is controlling appetite, food intake and energy balance through glucose metab-
olism45. Further, the endocannabinoid system has been reported as a key modulator of pain regulation46, and 
to play a role in the stress response regulation, fear and anxiety coping by modulating synaptic transmission 
processes (for a review see ref.47). Endocannabinoid signaling was suggested as a potential contributor to PTSD 
etiology in a recent metabolite profiling study20. Additionally, hair concentrations of endocannabinoids were 
associated with PTSD symptom severity48 hinting towards endocannabinoid-driven pathways in the aftermath of 
traumatic life events. With respect to chronic health effects in the aftermath of CM, individuals with a history of 
CM are at increased risk of experiencing chronic pain in adulthood49 and having a decreased pain tolerance50. We 
recently reported an association of CM with increased respiratory activity of mitochondria in intact immune cells 
and a pro-inflammatory phenotype in adulthood51. Future studies should determine whether these CM physio-
logical effects are related to PGH2-EA increase and its impact on the endocannabinoid system.

A history of CM is associated with a higher risk for developing a psychiatric disorder2. In line with this, a high 
percentage of our CM group was diagnosed with a lifetime psychiatric disorder applying the SCID-I interview 
(42%, N = 25; see Table 1). As CM and a lifetime psychiatric disorder are so highly correlated, the exclusion of 
these 25 CM+ women would have resulted in an artificial cohort and hence, we refrained from excluding these 
women in the first place. However, to assure that our results are not merely driven by the higher proportion of 
lifetime psychiatric diagnoses in the CM+ group, we repeated our analyses excluding these 25 women with a 
SCID-I-diagnosed lifetime psychiatric disorder from the CM group (new group sizes: N = 34 CM+, N = 46 CM−) 
and obtained similar results (see Supplementary Information S7). Thus, we can conclude that our results are not 
simply driven by the present lifetime psychiatric diagnoses, but are associated with the exposure to CM.

Strengths and limitations.  The human metabolome is affected by both physiological and environmental 
factors, such as age16, parity (for pregnancy-related changes see e.g.52) and smoking behavior21, hence, discovery 

Experiment METLIN-match
MM
(Da)

Rt
(min)

Control group
abundance 
score (log2)

CM group
abundance 
score (log2) Regulation 

in CM Statistica FDRN M (SD) N M (SD)

Lipids, positive
ionization mode

PC(O-18:0/20:0) 803.6784 8.65 42 20.97 (1.38) 44 18.33 (1.59) ↓ t(83.23) = 8.25, p < 0.001  <0.001

Ubiquinone 8 726.5553 8.65 41 23.04 (1.11) 34 20.56 (1.76) ↓ t(53.7) = 7.12, p < 0.001  <0.001

PI(22:2/20:5) 936.5721 3.94 30 18.06 (0.16) 37 17.88 (0.16) ↓ t(61.43) = 4.6, p < 0.001  <0.01

DG(18:0/20:3/0:0) 646.5508 8.65 28 20.97 (0.25) 36 21.21 (0.16) ↑ t(43.9) = −4.42, 
p < 0.001 0.01

PA(O-18:0/12:0) 606.4624 7.20 43 19.06 (0.37) 54 18.82 (0.32) ↓ W = 1604, p < 0.01 0.07

Lipids, negative
ionization mode PI(20:0/20:4) 914.5876 3.92 38 17.2 (0.46) 40 16.68 (0.4) ↓ t(72.94) = 5.33, p < 0.001  <0.001

Metabolites, positive
ionization mode PGH2-EA 393.2867 5.11 46 17.38 (0.23) 59 17.59 (0.41) ↑ t(93.31) = −3.32, 

p < 0.01 0.07

Metabolites, negative
ionization mode Bilirubin IXa 584.262 6.71 46 17.21 (0.92) 56 17.85 (0.96) ↑ t(97.75) = −3.45, 

p < 0.001 0.05

Table 2.  Results of univariate group comparisons. Abundance scores quantify the metabolite and lipid 
fractions. Only METLIN database-matched compounds with significant group comparisons after multiple 
testing correction with a False Discovery Rate (FDR) ≤0.10 are displayed; CM = childhood maltreatment; 
CTQ = Childhood Trauma Questionnaire23,24; MM = Monoisotopic mass in Da; Rt = Retention time in 
min. aFor normally distributed continuous data Welch’s t-test was calculated, if residuals were not normally 
distributed Mann-Whitney-U-test was computed.
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studies need to control for these factors. One strength of the study is the investigation of a rather homogenous 
group of Caucasian, adult, non-smoking, 3-months postpartum women from the same geographical region. 
Although this design eliminates potential confounding factors, it also limits the generalizability of results. 
Therefore, the validity of the discovered biomolecular signature needs to be confirmed in men and in women who 
are not pregnant or not in the postpartum period. Further, to replicate and complement our findings in serum 
metabolome, an investigation of the metabolite fingerprint of CM in other biofluids (e.g. saliva, urine) and in a 
longitudinal approach seems to be reasonable. In addition, the molecular identities of all candidate metabolites 
(apart from bilirubin IXa) remain to be confirmed.

The retrospective report of CM might go along with a significant under-reporting and measurement bias53. 
Yet, the results of this study argue for a nevertheless observable effect of retrospectively reported CM experiences 
on the metabolome. Lastly, even though the CM group and the control group did not differ in the intake of 
medication (see Table 1) and all metabolites and lipids of exogenous origin were excluded from the analyses, the 
potential influences of the taken medication on the metabolome cannot be completely excluded.

Results of PLS-DA Results of RF-CI

Rank METLIN-match [MM in Da; Rt in min] VIP Rank METLIN-match [MM in Da; Rt in min]
cvi 
(%)

1 PC(O-18:0/20:0) [803.6784; 8.65] * 3.56 1 PC(O-18:0/20:0) [803.6784; 8.65] * 4.88

2 Ubiquinone 8 [726.5553; 8.65] * 3.12 2 Ubiquinone 8 [726.5553; 8.65] * 1.61

3 DG(18:0/20:3/0:0) [646.5508; 8.65] * 2.88 3 DG(18:0/20:3/0:0) [646.5508; 8.65] * 1.13

4 PA(O-18:0/12:0) * [606.4624; 7.20] * 2.79 4 PI(22:2/20:5) [936.5721; 3.94] * 0.86

5 PI(22:2/20:5) [936.5721; 3.94] * 2.63 5 PA(O-18:0/12:0) * [606.4624; 7.20] * 0.85

6 PI(20:0/20:4) [914.5876; 3.92] * 2.55 6 PI(20:0/20:4) [914.5876; 3.92] * 0.55

7 PGH2-EA [393.2867; 5.11] * 2.29 7 PGH2-EA [393.2867; 5.11] * 0.41

8 TG(16:1/20:4/20:5) [898.7025; 10.26] 2.18 8 DG(22:4/22:4/0:0) [720.5697; 8.94] 0.12

9 Bilirubin IXa [584.262; 6.71] * 2.15 9 N-methyl arachidonoyl amine [317.2723; 5.13] 0.08

10 PE(18:0/0:0) [481.316; 7.64] 2.13 10 TG(16:1/20:4/20:5) [898.7025; 10.26] 0.08

11 LysoPE(0:0/22:0) [583.3842; 1.76] 2.13 11 PE(18:0/0:0) [481.316; 7.64] 0.08

12 N-methyl arachidonoyl amine [317.2723; 5.13] 2.02 12 4-Carboxy-4‘-sulfoazobenzene [306.031; 0.55] 0.06

13 C17 Sphinganine [287.282; 5.15] 1.88 13 LysoPE(0:0/22:0) [583.3842; 1.76] 0.06

14 PS(22:0/0:0) [581.3689; 7.89] 1.70 14 C17 Sphinganine [287.282; 5.15] 0.05

15 Levulinic Acid, 3-Benzylidenyl- [204.0784; 7.40] 1.69 15
(6RS)−22-oxo-23,24,25,26,27-pentanorvitamin 
D3 6,19 sulfur-dioxide adduct/(6RS)−22-
oxo-23 [392.2022; 2.13]

0.04

16 LysoPE(0:0/20:1) [507.3318; 7.89] 1.68 16 5β-Cholanic acid-3α, 12α-diol N-(2-
sulphoethyl)-amide [499.2977; 3.55] * 0.03

17 PC(18:2/17:0) [771.5771; 5.30] 1.66 17 PA(O-16:0/19:0) [676.54; 6.11] 0.03

18 DG(22:4/22:4/0:0) [720.5697; 8.94] 1.65 18 PI(18:2/0:0) [596.2955; 6.64] 0.03

19 Glycerophospho-N-Arachidonoyl Ethanolamine 
[501.2846; 6.73] 1.62 19 Flupenthixol-O-glucuronide [625.2071; 4.78] 0.03

20
(6RS)−22-oxo-23,24,25,26,27-pentanorvitamin 
D3 6,19 sulfur-dioxide adduct/(6RS)−22-oxo-23 
[392.2022; 2.12]

1.58 20 Adenine [135.0544; 1.06] 0.02

21 Methyl 8-[2-(2-formyl-vinyl)−3-hydroxy-5-oxo-
cyclopentyl]-octanoate [310.1777; 5.48] 1.58 21 Protoporphyrin IX [564.2746; 2.51] 0.02

22 4-Carboxy-4‘-sulfoazobenzene [306.031; 0.55] 1.56 22 DG(18:1/18:3/0:0) [616.5045; 7.28] 0.02

23 PI(18:2/0:0) [596.2955; 6.64] 1.56 23 Lactosylceramide (d18:1/24:1) [971.724; 6.72] 0.02

24 1-Octadecanamine [269.3083; 7.38] 1.54 24 PC(P-16:0/14:0) [689.5347; 5.00] 0.01

25 L-Homocysteic acid [183.0202; 0.61] 1.54 25 Bilirubin IXa [584.262; 6.71] * 0.01

26 PC(17:2/16:0) [743.546; 4.63] 1.49 26 PC(17:0/11:0) [677.4971; 4.08] 0.01

27 PC(17:0/11:0) [677.4971; 4.08] 1.49 27 Octadecadienoic acid [280.2403; 1.67] 0.01

28 Adenine [135.0544; 1.06] 1.47 28 Glucosylceramide (d18:1/16:0) [699.5628; 4.92] 0.01

29 Deoxyguanosine [267.097; 1.06] 1.46 29 PE(16:1/P-18:1) [699.5199; 5.50] 0.01

30 Protoporphyrin IX [564.2746; 2.50] 1.45 30 Glucosylceramide (d18:1/22:0) [783.6573; 7.11] 0.01

Table 3.  Variable importance scores for the 30 top-ranked METLIN-matched compounds in PLS-DA 
and RF-CI predicting a history of CM. The first 30 top-ranked metabolites for the Partial Least Squares-
Discriminant Analysis (PLS-DA) and random forests embedded in a conditional inference framework (RF-CI) 
are presented, displaying the respective importance of the candidates in the prediction of class membership 
(CM+ or CM−). For PLS-DA, Variable Importance in Projection (VIP) is provided, whereas conditional 
variable importance (cvi), representing the averaged mean decrease in accuracy, is stated for RF-CI. Bold 
highlighted metabolites popped up in the top 30 of both PLS-DA and RF-CI. Metabolites marked with an 
asterisk became significant in the univariate group comparisons after multiple testing correction. Da = 
Dalton; MM = Monoisotopic mass; Rt = Retention time.
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Conclusion
For the first time, we were able to show the feasibility of a biomarker discovery approach in the context of CM in 
postpartum women. Metabolite fingerprinting in postpartum women with and without a history of CM revealed 
a biomarker signature that could explain long-term effects of CM on health and disease by influencing oxidative 
stress and inflammation. The biomarker signature achieved a clear differentiation between women with and with-
out CM experiences with high accuracy rates (~80–90%). Thus, our study empirically strengthens the perspective 
that CM experiences initiate biomolecular pathways that might increase the biochemical vulnerability for mental 
health conditions later in life. Strikingly, similar pathways were observed in chronic stress and trauma-related 
conditions (including MDD and PTSD). Further replication studies are needed in independent cohorts. The 
clinical value of the biomolecular signature and the related physiological mechanisms can then be investigated. 

Figure 1.  (A and B) Separation of women with (orange, N = 13) and without (blue, N = 13) childhood 
maltreatment (CM) experiences in the validation set based on the in cross-validation selected 3-component 
PLS-DA model with 69 metabolites (VIP threshold = 1.2, accuracy: 80.8%, sensitivity: 76.9%, specificity: 
84.6%; A) or a more economical 3-component PLS-DA model with only six metabolites (VIP threshold = 2.5, 
accuracy: 88.5%, sensitivity: 92.3%, specificity: 84.6%; B).

Figure 2.  Comparison of bilirubin IXa MS/MS spectra between a pooled serum sample (A) and a commercial 
standard (B). Both fragmentation spectra show matches for residual precursor [M-H]− (m/z 583) and a 
prominent fragment ion (m/z 285) with MS/MS data acquired at a fixed collision energy (CE) of 10 V and the 
mass spectrometer operated in negative ionization mode.
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Prospectively, this deeper understanding of underlying biomolecular processes could help to identify individuals 
at risk and to allocate preventive interventions.

Materials and Methods
Study participants and study design.  The data was collected within the “My Childhood – Your 
Childhood” study, investigating risk and resilience factors in the transgenerational transmission of CM. The study 
was approved by the Ethics Committee of Ulm University and was performed in accordance with relevant guide-
lines and regulations. Immediately after parturition (on average 2.7 days [SD = 4.8] after birth), 548 women were 
recruited at the maternity ward of the Ulm University Hospital and provided written informed consent for study 
participation. Out of the initial cohort, 533 women participated in a screening for CM using the German version 
of the Childhood Trauma Questionnaire (CTQ)23,24. The cut-off criteria of the CTQ54 were used to divide the 
women in two groups: a control group including women without CM experiences (CM−) and a group of women 
reporting at least mild to severe maltreatment experiences during childhood (CM+). Three months postpartum, 
285 women participated in a follow-up that consisted of a psychodiagnostic interview and a sampling of periph-
eral blood. The psychodiagnostic interview included the comprehensive assessment of socio-demographic, med-
ical and clinical variables as well as the German research version of the Structured Clinical Interview (SCID-I)55 
for the diagnosis of (current and lifetime) major axis I disorders of the Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition (4th ed., text rev.; DSM-IV-TR)56. With the publication of the DSM-557, some diagnostic 
criteria changed. As the to DSM-5 changes updated version of the SCID-I has not yet been published when the 
study started, expert clinicians formulated additional questions and instructions to allow diagnoses of the mental 
disorders tested according to DSM-5 (e.g. bereavement was no exclusion criteria within the diagnosis of MDD 
in DSM-5). To further assess the lifetime exposure to traumatic events, the German version of the Posttraumatic 
Stress Diagnostic Scale (PDS)58 event list was used.

The sampling of peripheral blood for the preparation of serum was performed in 247 women. Due to the 
usage of the blood samples in other biological analyses, only 222 of these blood samples were available for the 
metabolomics analyses. Out of these 222 available samples, women were excluded due to missing psychological 
data (N = 30), autoimmune disease (N = 9), current smoking (N = 9), non-Caucasian ethnicity (N = 1), obesity 
(BMI >30 kg/m²; N = 18), acute intake of psychotropic medication (N = 1), and acute illness (N = 18). Women in 
the control group were also excluded if they had had a lifetime history of a psychiatric disorder (N = 23) or severe 
distress within the last three months (e.g. death of a close person; N = 8). Thus, the final study cohort consisted of 
46 women in the control group (CM−) and 59 women in the CM+ group.

The women reported their CM experiences retrospectively, which potentially led to significant 
under-reporting and measurement bias53. To consider these potential effects, the Minimization-Denial subscale 
of the CTQ was analyzed as suggested in the literature59 and identified eleven women, whose answers point 
towards a positive response bias. Nevertheless, all eleven women reported CM experiences, so they could not be 
falsely categorized as controls.

Detailed description of blood sampling, metabolite extraction, mass spectrometry, and statistical methods is 
available in Supplementary Methods. Data is available upon request from the corresponding authors.
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