494 research outputs found

    Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at √s = 13 TeV corresponding to an integrated luminosity of 36.1 fb −1 recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs

    Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb + Pb and pp Collisions with the ATLAS Detector

    Get PDF

    Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at root s=13  TeV

    Get PDF
    A search for events with two displaced vertices from long-lived particle (LLP) pairs using data collected by the ATLAS detector at the LHC is presented. This analysis uses 139 fb-1 of proton-proton collision data at s=13 TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of LLPs decaying to jets in the muon spectrometer displaced between 3 and 14 m with respect to the primary interaction vertex. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined. For the Higgs boson with a mass of 125 GeV, the paper reports the first exclusion limits for branching fractions into neutral long-lived particles below 0.1%, while branching fractions above 10% are excluded at 95% confidence level for LLP proper lifetimes ranging from 4 cm to 72.4 m. In addition, the paper present the first results for the decay of LLPs into tt¯ in the ATLAS muon spectrometer

    Determination of the Relative Sign of the Higgs Boson Couplings to W and Z Bosons Using WH Production via Vector-Boson Fusion with the ATLAS Detector

    Get PDF
    The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5σ, and the observed (expected) upper limit set on the cross section for vector-boson fusion WH production is 9.0 (8.7) times the standard model value at 95% confidence level

    Accuracy versus precision in boosted top tagging with the ATLAS detector

    Get PDF
    The identification of top quark decays where the top quark has a large momentum transverse to the beam axis, known as top tagging, is a crucial component in many measurements of Standard Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider. Machine learning techniques have improved the performance of top tagging algorithms, but the size of the systematic uncertainties for all proposed algorithms has not been systematically studied. This paper presents the performance of several machine learning based top tagging algorithms on a dataset constructed from simulated proton-proton collision events measured with the ATLAS detector at √s = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for the level of precision required for this study. The most performant algorithms are found to have the largest uncertainties, motivating the development of methods to reduce these uncertainties without compromising performance. To enable such efforts in the wider scientific community, the datasets used in this paper are made publicly available

    Studies of the Energy Dependence of Diboson Polarization Fractions and the Radiation-Amplitude-Zero Effect in WZ Production with the ATLAS Detector

    Get PDF
    : This Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→lνl^{'}l^{'}(l,l^{'}=e,μ) production. The dataset used corresponds to an integrated luminosity of 140 fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined. A nonzero fraction of events with two longitudinally polarized bosons is measured with an observed significance of 5.3 standard deviations in the region with 100200 GeV, where p_{T}^{Z} is the transverse momentum of the Z boson. This Letter also reports the first study of the radiation-amplitude-zero effect. Events with two transversely polarized bosons are analyzed for the ΔY(l_{W}Z) and ΔY(WZ) distributions defined respectively as the rapidity difference between the lepton from the W boson decay and the Z boson and the rapidity difference between the W boson and the Z boson. Significant suppression of events near zero is observed in both distributions. Unfolded ΔY(l_{W}Z) and ΔY(WZ) distributions are also measured and compared to theoretical predictions

    Measurement of the Lund jet plane in hadronic decays of top quarks and W bosons with the ATLAS detector

    Get PDF
    The Lund jet plane (LJP) is measured for the first time in t tbar events, using 140 fb^(-1) of root(s) = 13 TeV pp collision data collected with the ATLAS detector at the LHC. The LJP is a two-dimensional observable of the sub-structure of hadronic jets that acts as a proxy for the kinematics of parton showers and hadron formation. The observable is constructed from charged particles and is measured for R = 1.0 anti-k_t jets with transverse momentum above 350 GeV containing the full decay products of either a top quark or a daughter W boson. The other top quark in the event is identified from its decay into a b-quark, an electron or a muon and a neutrino. The measurement is corrected for detector effects and compared with a range of Monte Carlo predictions sensitive to different aspects of the hadronic decays of the heavy particles. In the W-boson-initiated jets, all the predictions are incompatible with the measurement. In the top quark initiated jets, disagreement with all predictions is observed in smaller subregions of the plane, and with a subset of the predictions across the fiducial plane. The measurement could be used to improve the tuning of Monte Carlo generators, for better modelling of hadronic decays of heavy quarks and bosons, or to improve the performance of jet taggers

    Test of lepton flavour universality in W-boson decays into electrons and τ-leptons using pp collisions at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of the ratio of the branching fractions, Rτ/e = B(W → τν)/B(W → eν), is performed using a sample of W bosons originating from top-quark decays to final states containing τ-leptons or electrons. This measurement uses pp collisions at s =13TeV, collected by the ATLAS experiment at the Large Hadron Collider during Run 2, corresponding to an integrated luminosity of 140fb−1. The W → τντ (with τ → eνeντ) and W →eνe decays are distinguished using the differences in the impact parameter distributions and transverse momentum spectra of the electrons. The measured ratio of branching fractions Rτ/e = 0.975±0.012(stat.)±0.020(syst.), is consistent with the Standard Model assumption of lepton flavour universality in W-boson decays

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    Get PDF
    The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb 1 in proton-proton (pp) collisions at the LHC at 13 TeV(Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore