135 research outputs found

    XMCD studies and magnetic properties of ZnTe doped with Ti, Cr, Mn and Co

    Get PDF
    Using the full potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code in connection with the Generalized Gradient Approximation (GGA). We study the magnetic properties of ZnTe doped with some transition metals elements. In addition, to the X-ray absorption spectra (XAS) and X-ray Magnetic circular dichroism (XMCD) calculations to compute the orbital and spin moments separately. Two principal examples will be given: The induced magnetic moments ZnTe of the light and heavy 3d elements (Ti, Cr and Mn, Co) can be determined by the XMCD sum rules analysis at the L2,3 edges. Moreover, it has been found that for the lighter 3d elements the spin-orbit splitting of the transitions 2P1/2 and 2P3/2 states reduces toward, which has a consequence that two excitations are coupled

    Engineering the magnetic and magnetocaloric properties of PrVO3 epitaxial oxide thin films by strain effects

    Full text link
    Combining multiple degrees of freedom in strongly-correlated materials such as transition-metal oxides would lead to fascinating magnetic and magnetocaloric features. Herein, the strain effects are used to markedly tailor the magnetic and magnetocaloric properties of PrVO3 thin films. The selection of appropriate thickness and substrate enables us to dramatically decrease the coercive magnetic field from 2.4 T previously observed in sintered PVO3 bulk to 0.05 T for compressive thin films making from the PrVO3 compound a nearly soft magnet. This is associated with a marked enhancement of the magnetic moment and the magnetocaloric effect that reach unusual maximum values of roughly 4.86 uB and 56.8 J/kg K in the magnetic field change of 6 T applied in the sample plane at the cryogenic temperature range (3 K), respectively. This work strongly suggests that taking advantage of different degrees of freedom and the exploitation of multiple instabilities in a nanoscale regime is a promising strategy for unveiling unexpected phases accompanied by a large magnetocaloric effect in oxides.Comment: This paper is accepted for publication in Applied Physics Letter

    Inherent Interfacial Mechanical Gradients in 3D Hydrogels Influence Tumor Cell Behaviors

    Get PDF
    Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems

    Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate

    Get PDF
    Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior

    Microfluidic systems: A new toolbox for pluripotent stem cells

    Full text link
    Conventional culture systems are often limited in their ability to regulate the growth and differentiation of pluripotent stem cells. Microfluidic systems can overcome some of these limitations by providing defined growth conditions with user‐controlled spatiotemporal cues. Microfluidic systems allow researchers to modulate pluripotent stem cell renewal and differentiation through biochemical and mechanical stimulation, as well as through microscale patterning and organization of cells and extracellular materials. Essentially, microfluidic tools are reducing the gap between in vitro cell culture environments and the complex and dynamic features of the in vivo stem cell niche. These microfluidic culture systems can also be integrated with microanalytical tools to assess the health and molecular status of pluripotent stem cells. The ability to control biochemical and mechanical input to cells, as well as rapidly and efficiently analyze the biological output from cells, will further our understanding of stem cells and help translate them into clinical use. This review provides a comprehensive insignt into the implications of microfluidics on pluripotent stem cell research. Conventional culture systems are often limited in their ability to regulate the growth and differentiation of pluripotent stem cells. In this review, the authors describe technologies that move small volumes of fluids (on microscales) and how they can be used with stem cells. These technologies can provide precise signals that control stem cells, causing them to self‐renew (produce more stem cells) or differentiate (become any of the cells in the body). They can also be used to investigate the biology of stem cells and test their quality for medical applications. These powerful tools could one day be used to combat degenerative diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96259/1/180_ftp.pd

    Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity

    Full text link
    The cellular environment impacts a myriad of cellular functions by providing signals that can modulate cell phenotype and function. Physical cues such as topography, roughness, gradients, and elasticity are of particular importance. Thus, synthetic substrates can be potentially useful tools for exploring the influence of the aforementioned physical properties on cellular function. Many micro‐ and nanofabrication processes have been employed to control substrate characteristics in both 2D and 3D environments. This review highlights strategies for modulating the physical properties of surfaces, the influence of these changes on cell responses, and the promise and limitations of these surfaces in in‐vitro settings. While both hard and soft materials are discussed, emphasis is placed on soft substrates. Moreover, methods for creating synthetic substrates for cell studies, substrate properties, and impact of substrate properties on cell behavior are the main focus of this review. The cellular environment plays a significant role in cell phenotype and function. As such, physical properties of cell culture substrates including topography, roughness, and elasticity may be utilized to investigate the influence of these physical cues on the cellular response. In this review, strategies for modulating the physical properties of surfaces, the influence of these changes on cell responses, and the promise and limitations of these surfaces in in‐vitro settings are highlighted, with a particular emphasis on elastic substrates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90132/1/336_ftp.pd

    Bio-Inspired Materials For Parsing Matrix Physicochemical Control Of Cell Migration: A Review

    Get PDF
    Cell motility is ubiquitous in both normal and pathophysiological processes. It is a complex biophysical response elicited via the integration of diverse extracellular physicochemical cues. The extracellular matrix directs cell motilityvia gradients in morphogens (a.k.a. chemotaxis), adhesive proteins (haptotaxis), and stiffness (durotaxis). Three-dimensional geometrical and proteolytic cues also constitute key regulators of motility. Therefore, cells process a variety of physicochemical signals simultaneously, while making informed decisions about migration viaintracellular processing. Over the last few decades, bioengineers have created and refined natural and synthetic in vitro platforms in an attempt to isolate these extracellular cues and tease out how cells are able to translate this complex array of dynamic biochemical and biophysical features into functional motility. Here, we review how biomaterials have played a key role in the development of these types of model systems, and how recent advances in engineered materials have significantly contributed to our current understanding of the mechanisms of cell migration

    Integrated Micro/Nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106681/1/adma201304431.pd

    Additional information on

    No full text
    The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT 1 , NOT 2 , and Hadamard 2 quantum logic gates are studied for the diatomic molecule 12 C 16 O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation
    corecore