
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Chemical Engineering Faculty Publication 
Series Chemical Engineering 

2011 

Bio-Inspired Materials For Parsing Matrix Physicochemical Bio-Inspired Materials For Parsing Matrix Physicochemical 

Control Of Cell Migration: A Review Control Of Cell Migration: A Review 

Hyung-do Kim 
Massachusetts Institute of Technology 

Shelly Peyton 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/che_faculty_pubs 

Recommended Citation Recommended Citation 
Kim, Hyung-do and Peyton, Shelly, "Bio-Inspired Materials For Parsing Matrix Physicochemical Control Of 
Cell Migration: A Review" (2011). Integrative Biology. 877. 
https://doi.org/10.1039/c1ib00069a 

This Article is brought to you for free and open access by the Chemical Engineering at ScholarWorks@UMass 
Amherst. It has been accepted for inclusion in Chemical Engineering Faculty Publication Series by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/239582475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/che_faculty_pubs
https://scholarworks.umass.edu/che_faculty_pubs
https://scholarworks.umass.edu/che
https://scholarworks.umass.edu/che_faculty_pubs?utm_source=scholarworks.umass.edu%2Fche_faculty_pubs%2F877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1039/c1ib00069a
mailto:scholarworks@library.umass.edu


Bio-Inspired Materials For Parsing Matrix Physicochemical 

Control Of Cell Migration 

 

A Review 

 

 

 

Hyung-Do Kim1, Shelly R. Peyton2 

 

1. Department of Biological Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 

2. Department of Chemical Engineering, University of Massachusetts, Amherst, MA 

 

 



ABSTRACT 

 

Cell motility is ubiquitous in both normal and pathophysiological processes. It is a 

complex biophysical response elicited via the integration of diverse extracellular 

physicochemical cues. The extracellular matrix directs cell motility via gradients in 

morphogens (a.k.a. chemotaxis), adhesive proteins (haptotaxis), and stiffness 

(durotaxis).  Three-dimensional geometrical and proteolytic cues also constitute key 

regulators of motility.  Therefore, cells process a variety of physicochemical signals 

simultaneously, while making informed decisions about migration via intracellular 

processing.  Over the last few decades, bioengineers have created and refined natural 

and synthetic in vitro platforms in an attempt to isolate these extracellular cues and 

tease out how cells are able to translate this complex array of dynamic biochemical and 

biophysical features into functional motility.  Here, we review how biomaterials have 

played a key role in the development of these types of model systems, and how recent 

advances in engineered materials have significantly contributed to our current 

understanding of the mechanisms of cell migration. 



INTRODUCTION 

 

Human physiology, pathophysiology, and regenerative medicine are each built 

on the careful orchestration of cellular motile machinery.  Embryonic morphogenesis 

relies on migratory events during gastrulation and neural crest development [1-3].  In 

vertebrate adults, cell motility is a critical part of wound healing and tissue repair [4].  

Collective motility of epithelial cells constantly renews skin and intestinal tissue.  Finally, 

immune surveillance would be impossible without the unique migratory ability of 

lymphocytes [5, 6].  Dysregulation of migratory processes results in disastrous 

consequences, such as vascular disease, osteoporosis, chronic inflammatory diseases, 

multiple sclerosis, and even mental retardation. Aberrant cell migration in cancer 

(metastasis), is the leading cause of cancer-related deaths [7].  

Therefore, understanding cell migration’s role in healthy tissue, in disease 

progression, and for tissue engineering, has been of great interest to the scientific 

community.  The elucidation of the signaling pathways underlying the regulation of 

motility has led to the identification of intracellular components that robustly respond to 

cues from the microenvironment, such as growth factors, cytokines, and physical cues 

from the extracellular matrix.  Cell migration is a cycle of biophysical processes that are 

spatio-temporally regulated [8, 9].  The cycle is initiated by the cell’s extension of 

protrusions, which requires polymerization of actin microfilaments, aided by actin-

binding proteins, such as Arp2/3, profilin, cofilin, and Ena/VASP proteins [10].  

Protrusions at the leading edge of a cell (wide lamellipodia or finger-like filopodia) form 

stable adhesions to the ECM ligands via transmembrane proteins, called integrins [11, 

12].  Protrusions and adhesions, often in conjunction with extracellular soluble 

gradients, establish an intracellular polarity, and activate a myriad of known and 

unknown signaling proteins [13] including the Rho-family GTPases [14-17].  Upon 

adhesion, active GTPases initiate a cascade of events, and myosin II generates forces 

by pulling on the actin microfilament network to translocate the polarized cell body [18].  

The carefully regulated, spatio-temporally controlled activation of this signaling network 

also leads to the disassembly of adhesions at the trailing edge of the cell, and a net 

contractile force at the leading edge, allowing the cell to migrate [19].  Depending on the 



cell type, the orchestration of these processes can vary widely.  The components of the 

migration cycle: protrusion, attachment, and contraction, can be observed as separate 

processes in mesenchymal-like cells, such as fibroblasts, whereas in amoeboid-like 

cells, such as leukocytes, different mechanisms of migration have been proposed [20, 

21], and individual processes may be less easily discernable.   

The resulting cell movement must occur in balance with the physical properties of 

the extracellular microenvironment.  The ECM consists of various filamentous, 

amorphous, and cross-linking proteins, such as collagens, laminins, fibronectins, 

glycosaminoglycans, etc., and provides both a physical support and barrier for cell 

migration [22].  Many cells, therefore, have a framework for remodeling the ECM – from 

cleavage of ECM proteins through various secreted proteases to secretion of ECM 

proteins – and rely heavily on this framework for productive locomotion [23].  In contrast, 

recent work indicates that leukocytes do not require ECM modifying abilities and employ 

a proteolysis-independent mechanism to enable fast movement without destruction to 

the tissue [20, 24].   

 The diversity of biophysical processes in cell migration has provided a great 

opportunity for the field of biomaterials to pose biologically relevant questions via the 

creative design of well-defined microenvironments.  To date, much of the mechanistic 

research in the field has been generated in a physiologically inappropriate context: 

tissue culture plastic.  Tissues in the human body are not two-dimensional, and have a 

far more complex physical and chemical microenvironment that dictates cell behavior.  

Further, two-dimensional studies naturally neglect proteolysis-driven motility and tissue 

invasion [25].  The biosciences community has increasingly sought more physiologically 

relevant systems, which permit the ability to quantitatively probe various aspects of cell 

migration in a diverse set of microenvironments.  The biomaterials field has emerged 

out of a traditional landscape of inert material design into the engineering of bio-

instructive, -specific, and -responsive tools over the last twenty years.  Both tissue-

derived and synthetic materials can be rendered biologically sensitive and directive with 

the incorporation of adhesive matrix factors, signal-initiating growth factors (and growth 

factor depots), and enzymatic recognition sites (for review see [26]).  New technology is 

continuously emerging to decipher how physicochemical cues from the extracellular 



matrix, such as chemical, nanotopographical, mechanical, and enzymatic cues, can 

feedback and regulate intracellular processes to study how cells make decisions about 

migration.  Cell migration studies using these engineered materials have provided 

insights into a phenomenon that compels a quantitative approach for establishing 

relationships between migratory parameters. 

In this review, we examine the use of biomaterials in elucidating novel insights 

into the mechanisms of cell migration, and attempt to place these findings into a 

physicochemical perspective.  We outline our appreciation for the contribution of the 

current biomaterials literature to the general biochemical and biophysical understanding 

of cell migration.  We specifically focus on the use of biomaterials to control chemotaxis, 

matrix adhesivity and haptokinesis/-taxis, matrix elasticity and durotaxis, cell polarity, 

and proteolysis, and the ability of these materials to allow discovery of key mechanistic 

parameters cells rely on to make decisions about cell migration in general.  For 

literature describing cell migration relevant to specific physiology and pathophysiology, 

we refer the audience to other reviews [1-7, 9, 27].  



CHEMOTAXIS 

 

Chemotaxis is the directed migration of cells in response to a soluble chemical 

signal.  Chemotaxis-driven migration is prevalent in many biological events, such as 

development, the immune response, and wound healing.  For example, interstitial flow 

induces a gradient of chemokines that directs cell migration for lymphatic angiogenesis 

[28-30]. The release of soluble factors from leaky vessels and macrophages is common 

in damaged tissues and disease states, eliciting unwanted migration and disastrous 

consequences, such as in cardiovascular disease or metastasis. For example, a mutual 

chemotactic gradient established between macrophages and carcinoma cells through 

paracrine release of EGF and CSF-1 enhances tumor metastasis [31, 32].   

In vitro assays to study chemotaxis have been under development for the past 

three decades, beginning with simple studies of cells migrating on glass surfaces in the 

presence of localized soluble factors.  The Boyden migration chamber was the most 

notable early advancement in tools development to study cell invasion toward 

chemoattractive factors [33], where cell invasion is measured through an adhesive 

porous filter toward a chemoattractive factor.  No matrix degradation is required for 

invasion, but pore sizes of the filter can be varied to assess the effect of steric barrier.  

The under-agarose assay was the first biomaterials development to add a 3D context to 

better mimic an in vivo environment for chemotactic studies [34].  In this assay, 

chemoattractants are deposited into a small well within a 3D agarose gel, while a 

suspension of cells is placed nearby.  Cells sense and migrate toward the diffusive 

gradient of soluble factors through the nanoporous hydrogel.  This assay can 

recapitulate some of the physiological aspects of chemotactic responses important in 

inflammation.  Though quite simple, relevant quantification of diffusion characteristics, 

as well as visualization of cell motility can be achieved from this assay [35].   

Both the under-agarose and Boyden chamber are end-point assays, prohibiting 

assessment of individual cell kinetics.  In addition, because these assays use a single 

sink of soluble factor, chemoattractants do not form stable gradients, as is often 

observed in physiological conditions.  The development of microfluidic devices to create 

stable and reproducible gradients of chemical factors has produced chemotaxic 



microenvironments closer to physiologic conditions than ever before achievable.  

Surprisingly, very basic microfluidic systems have been around and used for short time-

point bacterial migration assays for many years [36].  More recently, microfluidic 

platforms have evolved to include 3D gels, overlaid gradients of multiple factors, and 

separated chambers to analyze cell-cell communication and coordinated motility.  

Microfluidic platforms are now commercially available to study the migratory response of 

immune cells to antibodies, shear stresses, and inflammatory cytokines [37].   

Microfluidic platforms have made quantitative 3D models of real-time chemotaxis 

possible, both for adherent and suspension cells [38].  Using a 3D platform that 

separated cell-seeded areas and gel-only areas, Chung et al. observed cancer cell 

migration through 3D materials toward a stable gradient of VEGF [39], recapitulating 

invasion during metastasis in the presence of leaky vasculature.  This device also 

allows for sophisticated co-cultures of endothelial cells, smooth muscle cells and cancer 

cells to investigate the coordinated cell-cell communication, as one would find in a well-

vascularized tumor microenvironment.  The authors observed that cancer cells 

promoted endothelial migration (to different degrees, depending on the cancer cell 

subtype), while the presence of smooth muscle cells inhibited endothelial motility.   

Chemotactic motility in the presence of multiple growth factors is possible with 

ladder chamber microfluidics, which include multiple compartments, and generate 

stable diffusion in both 2D and 3D geometries, in the absence of shear flow (a common 

component of other microfluidics platforms, which can influence cell behavior in an 

uncontrollable fashion) [40].  With this platform, researchers generated a stable gradient 

of IL-8, and directed the migration of neutrophils.  By being able to tightly control shear 

forces and chemical gradients independently, these types of systems could lend 

powerful insight in the study of neutrophils responding to inflammatory cues, as well as 

cancer cell motility toward leaky vessels in physiologically relevant 3D 

microenvironments.   

The studies thus far have all discussed the diffusion of soluble factors through a 

media solution or semi-porous 3D milieu.  However, growth factors in vivo are 

commonly found covalently, ionically, or physically connected to the surrounding 

insoluble fibrous matrix.  Advances in wet surface chemistries have enabled creation of 



stable gradients of growth factors tethered to 2D surfaces to study the interaction of 

cells with covalently bound chemokines.  The biomaterials community has found 

chemical methods to tether growth factors to 3D systems without interfering with their 

bioactivity [41-43].  For example, recent work by Stefonek-Puccinelli and Masters 

exploited surface chemistry techniques to overlay gradients of EGF and IGF-1 onto 

standard tissue culture plates [44].  Subtle effects were seen when comparing the 

growth factors, but they observed a dramatic increase in overall kerotinocyte migration 

by covalently linking growth factors to the surface of the plates when comparing to the 

growth factor free control.  In addition, they observed a biphasic relationship between 

cell migration and maximum EGF concentration, with an optimal migration at an 

intermediate concentration of EGF, which has also been described for chemotaxis with 

soluble growth factors [45].  

Biomaterials systems have enhanced the study of chemotaxis in a myriad of 

ways.  Unlike glass and plastic substrata, biomaterials have large pore sizes (on the 

order of nanometers), which allow for diffusion of chemoattractants or flow rates of 

fluids.  Pore sizes can be easily tuned by varying the crosslinking densities of the 

biomaterial.  The addition of interstitial flows in controlled environments can be used to 

study combinatorial effects of chemical and mechanical factors that are physiologically 

relevant to lymph draining and tumor cell intravasation [46]. These types of systems 

may better mimic the interactions that cell surface receptors have with extracellular 

factors in the body, leading to interesting discoveries. 



CELL ADHESION AND HAPTOTAXIS 

 

In addition to soluble factors, cell motility is also regulated by insoluble adhesive 

matrix components.  Adhesive protein-mediated motility is called haptokinesis, while 

directed motility by an adhesive gradient is called haptotaxis.  Adhesive domains in the 

ECM not only serve as a physical mechanism for cell adhesion, but also as complex 

biochemical regulators of a variety of cellular responses, including motility [47, 48].  The 

diversity of ECM composition in various tissues indicates that, like soluble chemokines, 

levels and distribution of Type I and IV Collagen, fibronectin, and laminins have a 

profound effect on cell migration responses.  The dynamic assembly of focal adhesions, 

a cluster of proteins connecting integrins to the intracellular cytoskeleton, as observed in 

two-dimensional (2D) and three-dimensional (3D) cultures, plays an important role in 

cell migration [47, 49, 50].  Therefore, many efforts have been directed towards 

quantifying the contribution of adhesions to the overall migratory behavior by controlling 

the microenvironment in which adhesions are formed [51, 52].   

 Nearly fifteen years ago, CHO cell and smooth muscle cells were shown to have 

a biphasic cell migration speed dependence on the concentration of insoluble adhesive 

proteins passively adsorbed on glass slides [53, 54]. Simple control of ECM ligand 

density was achieved via adsorption coating of glass slides with purified natural ECM 

proteins, ranging from fibronectin, collagen, laminin, or fibrinogen.  The observed 

biphasic dependence could be further tuned by knocking down integrin expression 

targeting the ECM proteins.  Ten years later in 3D microenvironments, modulation of 

PtK1 epithelial cell migration under dose-dependent inhibition of myosin [55] was 

consistent with an ECM ligand density-dependent increase in fibroblast cell speed on 

fibronectin when stimulated with EGF [56].  There also existed an optimal fibronectin 

concentration, at which EGF stimulation resulted in the greatest increase in cell speed.  

Thus, EGF stimulation, through its activation of various contractility pathways including 

ROCK [57], could provide a compensating increase in cell contractility, but could only 

demonstrate optimal compensation at a particular fibronectin concentration.  At very low 

concentrations of fibronectin, EGF stimulation decreased cell speed indicating that the 

balance-disrupting increase in contractility could result in a reduction in motility [56].   



These studies demonstrated that systematic variation of physicochemical cues is vital to 

deconvolve the complex biophysical processes involved in cell migration.   

  The conjugation of adhesion sites into biomaterials has been of great interest to 

the community to optimize cell colonization [52].  A variety of polymers have been 

conjugated with either natural proteins, the IKVAV peptide present in laminin [58], or, 

most prominently, the RGD peptide, which is present in many ECM proteins, and 

recognized by multiple integrin subtypes [59].  For example, in conjunction with 

sphingosine-1-phosphate (S1P), researchers at Washington University conjugated 

varying ratios of synthesized RGD (or cyclic RGD) and poly(ethylene glycol) (PEG)-vinyl 

sulfone hydrogel precursors [60].  They confirmed previous reports that endothelial cell 

migration on RGD-containing hydrogel depended biphasically on RGD concentration.  

Importantly, this biphasic curve shifted in the presence of S1P, demonstrating the 

interplay between soluble and insoluble cues in regulating motility.  The biphasic 

dependence of cell speed has also been demonstrated in numerous 3D constructs 

including in prostate cancer migration in Matrigel [61], and both fibrosarcoma and 

smooth muscle cell migration in PEG-based gels [62, 63].   

 The combination of cell speed and directional persistence determines the total 

distance travelled for a single cell [64].  The significance of directional persistence 

during haptokinesis is not fully understood; however, parsing the effects of various 

migratory phenomena, such as haptokinesis, haptotaxis, chemokinesis, and 

chemotaxis, will aid in predicting the integration of all these effects during 

physiologically relevant cell migration.  Interestingly, NR6 fibroblasts exhibit directional 

persistence that is highest at an intermediate Amgel coating concentration [65].  

However, stimulation with a bath application of EGF decreases directionally persistent 

migration [65, 66].  The authors claim that EGF may increase cell speed in metastatic 

cells, but decrease directional persistence in order to increase the total area probed via 

randomly directed environment sensing.  However, this biphasic directionality response 

has not been universally reported.  In the study on S1P, persistence is only weakly 

dependent on RGD ligand density, and only subtly responsive to S1P stimulation [60].  

Therefore, it appears that cell persistent migration is not necessarily correlated with cell 



migration speed. Future rational biomaterial design will likely require fine-tuning over 

multiple independent physical parameters to maximize directional cell migration. 

A unique area of impact provided by the biomaterials community has been the 

nano-scale control and presentation of biochemical cues.  For example, Spatz et al. 

initially demonstrated that by allowing di-block copolymer micelles containing gold 

nanoparticles to form on glass substrates, they are able to obtain well-controlled 

spacing of gold particles [67].  Careful variation of the copolymer concentration achieves 

particle spacing between 28 nm and 110 nm.  Subsequent conjugation of gold 

nanoparticles with thiol-conjugated cyclic RGD peptides resulted in well-defined 

separation of RGD adhesion sites, in which only one integrin theoretically binds to the 

adhesion site.  This is in sharp contrast to varying bulk ligand density, in which ligand 

presentation is ultimately stochastic.  On surfaces with large RGD spacing, rat 

fibroblasts are unable to spread properly due to lack of focal adhesion stability [67]. 

Fibroblasts on large RGD spacing migrate quicker, but with less persistence, perhaps 

due to the lack of cell spreading and its influence on polarity.  It has been previously 

demonstrated that fast turnover in focal adhesions, or the short-lived focal contacts, is 

correlated with increased cell migration speed [68, 69].  Spatz et al. also used the gold 

nanoparticle approach to create well-defined linear gradients of RGD spacing, via 

controlled retraction of the substrate from the copolymer solution during coating [70].  

Here, the authors show that cells polarize and exhibit tendency to migrate towards the 

higher gradient of adhesive ligand.  While single RGD peptides were presented in the 

above studies, others have used controlled substrates to study the effect of integrin 

clustering on cell motility [56].  To do this, RGD was linked to a star-shaped polymer 

consisting of PEG linkers and conjugated to a PEG hydrogel. Clustered spatial 

organization of RGD increased NR6 fibroblast migration speeds and robust stress fiber 

formation compared to unclustered RGDs.  This type of controlled spatial presentation 

of ligands is physiologically relevant, as the in vivo ECM likely presents an unpredicted 

spatial presentation of integrin binding sites as well as bound growth factors. 

As stated earlier, physiological migration does not occur on substrates with 

homogeneously distributed adhesion sites.  The cell migration microenvironment 

consists of varying levels of ECM components with localized gradients.  Therefore, 



great interest exists in understanding the cell’s migratory response upon encountering 

haptotactic cues.  There are various biomaterial technologies suited to create molecular 

gradients, including self-assembled monolayers (SAMs) and PEG hydrogels [51, 62, 71, 

72], which can be combined with microfluidic systems [73] to enhance local cell motility.  

SAMs are generally created via assembly of alkane-thiols onto gold surfaces and 

subsequent biomolecule conjugation.  Migration of bovine aortic endothelial cells on 

fibronectin gradients is directed distinctly towards increasing adhesion sites [74, 75].  

Not surprisingly, the haptotactic effect can be enhanced by growth factors [76].  RGD 

gradients in PEG gels can be created by UV polymerizing RGD-conjugated PEG 

diacrylate and unconjugated PEG diacrylate at different concentrations [77], or by 

polymerization of microfluidics-mediated RGD-PEG precursors [78].  Both human 

dermal fibroblasts and mouse embryonic fibroblasts in these studies, respectively, 

enhanced their migration speeds towards increasing RGD density, and in both cases, 

migration speed was dependent on the slope of the gradient.  Combination of contact 

printing and SAM can print ligands to different regions to control cell adhesion [79-81].  

These types of technologies, impossible without the integration of biological insight and 

biomaterials engineering, show promise in regulating cell migration, both in the context 

of future rational scaffold design and for mechanistic understanding.  

 

 

 

 

 

 

 



MATRIX MECHANICS AND DUROTAXIS 

 

It is now widely accepted that mechanical forces from the extracellular matrix 

play a large role in directing tissue morphogenesis and progenitor cell lineage 

commitment, where mechanical forces can be transferred between cells through 

cadherins and the intermediate filaments, or between cells and the matrix through focal 

adhesions and the actin cytoskeleton.  A subset of mature tissues experience dynamic 

mechanical loading in vivo, such as in the cardiovascular and musculoskeletal systems, 

and these mechanical forces are thought to be critical for the maintenance of proper 

smooth muscle and bone cell phenotype.  Also, endothelial cell function is regulated by 

the constant shear stresses conferred to them in cardiovascular and pulmonary tissues.  

In fact, when cells from these tissues are removed from the body and cultured on tissue 

culture plastic, they markedly lose proper differentiation marker expression, and convert 

to a synthetic phenotype.  Mechanical forces (both static and dynamic) from the ECM in 

vitro are known to influence endothelial cell behavior (for review, see [82]), stem cell 

lineage commitment [83], both smooth and skeletal muscle cell plasticity [84-86], 

osteoblast phenotype [87], as well as many other cell and tissue behaviors (for review, 

see [88]).  

The first evidence that the static mechanical properties of the ECM could be 

translated into functional changes in migratory phenotype came from Yu-Li Wang’s lab 

over a decade ago.  They created engineered substrates from polyacrylamide (PAA) 

hydrogels, more traditionally known for their tunable mesh sizes, and used in molecular 

biology for protein separation [89].  Although disputed by some [90], these substrates 

were reportedly the first of their kind to demonstrate independent control over substrate 

stiffness and the concentration of adhesive ligand presented at the surface.  These 

tunable mechanical properties were exploited to create a 2D substrate that contained an 

interface between a compliant and a stiff surface, with the integrin-binding collagen 

protein covalently linked to the surface to facilitate cell adhesion.  When 3T3 fibroblast 

migration was tracked using time-lapse microscopy, cells initially adhered on the soft gel 

were found to preferentially migrate onto the stiffer surface.  Conversely, cells initially 

adhered to the stiffer surface would preferentially stay on the stiffer substrate (Figure 



3A-B).  This first evidence of stiffness-directed cell motility is now widely known as 

mechanotaxis, or durotaxis. 

In a more quantitative study, human aortic smooth muscle cell migration was 

compared on uniform PAA substrates of different stiffnesses [91].  Similar to variation of 

adhesivity, cells migrated fastest on substrates of intermediate stiffness and exhibited a 

biphasic migration speed as a function of static matrix stiffness (Figure 3C).  This 

experiment corroborates that force balance between ECM tension and cytoskeletal 

contractility is critical in generating motility.  Indeed, the stiffness value at which this 

maximum migration speed occurred depended on the concentration of adhesive protein 

presented at the surface.  This biphasic phenomenon has also been seen with both 

osteoblasts [92] and neutrophils [93], but not necessarily with all cell types [94], 

suggesting a differential role of contractility in cell migration across cell types.  

Nevertheless, these studies provide a mechanistic foundation for the durotactic 

behavior observed in Yu-Li Wang’s study.  

The development of stable gradients of stiffness within 2D substrates has been a 

powerful advancement in the study of durotaxis phenomena.  PAA substrates can be 

created with a gradient in stiffness with a simple, yet elegant technique of combining 

photo-masking with photo-sensitive polymerization [95].  On these surfaces with 

gradients in stiffness, vascular smooth muscle cells (SMCs) migrated radially from soft-

to-stiff regions of the hydrogel.  Using a sophisticated microfluidics approach, Burdick et 

al. created gradients in both the concentration of adhesive peptide (RGDS) and PEG 

crosslinker content [96].  Though not fully explored within this study, systems such as 

these could be used to study the cross talk of adhesive and stiffness cues in the 

directed migration of cells in 2D.   Expanding on this microfluidics approach, Zaari et al. 

created gradients in stiffness ranging from ~1 to 40kPa on a single PAA gel within a 

3mm total distance [97].   In agreement with this lab’s previous work, an increase in 

SMC attachment, total spread area, and F-actin fiber definition was observed with 

increasing substrate stiffness along the gradient.  It was not clear from this study, 

however, if cells were able to migrate preferentially toward the stiff region of the gel, or if 

the increase in cell number on the stiffer regions was due to an increase in attachment.   

Isenberg et al. followed up this study using the same microfluidic platform to discern 



whether or not a gradient in stiffness could direct SMC migration [98].  They found that 

SMCs were responsive to the stiffness cue, and that the strength of the gradient 

controlled how responsive cells were to the stiffness cue given.  Presumably, if a 

stiffness gradient is too gradual, changes in stiffness will not occur within the same 

length scale of the cell.  Unlike soluble growth factors, this stiffness cue is static, and a 

cell may have to encounter the cue probabilistically during its random walk for it to have 

an effect. 

Mechanosensing in 3D model systems is just beginning to be investigated.  To 

parse the roles of 3D matrix mechanics and cell motility, a number of natural 

biopolymers have been widely embraced, especially Type I Collagen [99] and Matrigel.  

These systems offer an extreme ease of use, as they can be commercially purchased, 

contain natural cell-adhesive domains, are enzymatically degradable, and can be made 

to span a small range of stiffnesses.  Using a nested collagen matrix technique 

pioneered by Fred Grinnell, Miron-Mendoza et al. showed that the stiffness of the outer 

cell-free matrix increased the ability of human foreskin fibroblasts to migrate [100].  

When the outer matrix was soft, cell migration slowed, and it was possible to visualize 

collagen fibers moving under cell tractional forces.  They hypothesized that motile cells 

use tractional forces to pull on collagen fibrils to move forward, so when the outer matrix 

is restrained by internal crosslinks, cell tractional forces can be completely transduced 

into cell motility.  In lieu of increasing crosslinker content, cell migration was also 

maximized by constraining the outer gel onto the walls of the polystyrene tissue culture 

plate.   

Using Matrigel as a model system, Zaman et al. reproduced the biphasic 

dependence of migration speed on material stiffness in human prostate carcinoma cells 

(Figure 3D) [61].  Interestingly in this 3D environment, the relationship between cell 

migration speed, matrix stiffness, and matrix adhesion did show the same curve shift as 

was previously shown on 2D substrates [91].  As the 3D environment was softened, cell 

migration speed was maximized in conditions with lower adhesivity. At first glance, this 

result contradicts previous work on 2D substrata.  However, many parameters require a 

closer look in this Matrigel study, including the difference in cell types studied (highly 

invasive prostate carcinoma cells vs. the generally less-motile primary, fully 



differentiated SMCs), and the difference in the stiffness ranges tested.  The authors 

make many suggestions as well, including the added viscoelastic resistance of a 3D 

matrix of entangled fibers affects the ability of cells to polarize, which may account for 

this difference in balance of adhesive and mechanical traction forces, forcing cells to 

alter their morphology to squeeze through pores. The authors compared these 3D 

relationships between stiffness, adhesion, and proteolysis in a parallel computational 

model [101].  However, the lack of control of physicochemical properties in this and 

other protein-based 3D systems may produce convoluting factors.  Matrigel 

concentration is increased to stiffen the resulting 3D gel, which also alters the adhesive 

ligand concentration, pore diameters, diffusion of growth factors, and the availability of 

enzymatically-sensitive peptide domains.  

One challenge ahead is to elucidate the mechanism of force transduction.  

Canonically, it is theorized that mechanical signals from the ECM are transmitted to the 

internal structure of the cell via integrins (for review, see [102]).  Several studies have 

pointed to integrins as providing a link between mechanical changes in the matrix and 

cell migratory phenotypes [61, 103, 104].  Further, focal adhesions are known to be 

sensitive to substrate mechanical properties [105, 106].  However, it is still not 

completely understood how integrins are able to transfer mechanical information 

between the cell and the ECM.  One theory is that cells are constantly probing their 

mechanical environment and exerting tension via myosin contraction along F-actin 

filaments [107, 108].  A motor-clutch mechanism may explain how maximum migration 

speeds have been observed on substrates of intermediate stiffness, as intracellular 

tension increases with increasing substrate stiffness up to a point of frictional slippage 

[108].  The mechanisms behind which cells are able to respond to mechanical cues in 

3D are less clear, as natural biopolymer systems (such as Type I Collagen and 

Matrigel), are unable to separate stiffness cues from proteolytic and adhesive cues.  

Current synthetic gel systems achieve this goal, but still have problems of convoluting 

stiffness and porosity/diffusion parameters.  New technologies are on the verge of 

achieving this goal, including macroporous synthetic scaffolds [109], and 3D systems 

with gradients in elasticity [110].  



Given the diversity of mechanical environments in vivo, the ability to engineer 

substrates that contain tunable static and dynamic mechanical properties is extremely 

useful.  Further, the loss of these naturally occurring mechanical forces with tissue 

culture plastic dishes may be a key factor in why cells undergo unnatural changes in 

their phenotype in culture.  Ideally, biomaterial tools will include tight control over all 

these physicochemical features, such as adhesivity, microarchitecture, and stiffness, so 

that engineers and biologists are able to study cell motility in more physiologically 

relevant environments, yet more reliably, reproducibly, and cost effectively than in 

animal models. 

 



PROTEOLYSIS 

 

There is increasing interest in studying migration in 3D environments, with the 

awareness that the vast majority of migratory microenvironments in vivo are composed 

of cells surrounded by matrix in all dimensions [22, 111, 112].  The most researched 3D 

motility phenomenon is ECM proteolysis, specifically proteolysis mediated by members 

of the matrix metalloproteinase (MMP) family [113-115].  Cell migration in 3D ECM is 

complicated by the existence of steric barriers, created by the integration of a diverse 

profile of insoluble scaffolding proteins, such as fibrous, porous Type I Collagen 

networks and the denser, amorphous laminin-fibronectin networks [48].  To overcome 

steric barriers, cells possess an arsenal of MMPs, as well as proteolysis-independent 

motility mechanisms [21].  The secretion of MMPs and their inhibitors, is, like all cellular 

processes, a tightly regulated process stimulated by a variety of physicochemical cues 

[113].  Biophysically, matrix remodeling results in local and global changes in ligand 

density, matrix stiffness, and scaffold geometry, which feedback to regulate cell motility.  

Therefore, proteolysis-mediated cell migration poses an interesting feedback 

mechanism that still requires elucidating for a variety of purposes, including 

understanding tumor invasion and the rational design of tissue engineering constructs.  

Controlled microenvironments provide an opportunity to deconvolve the complexity 

involved in proteolysis-mediated cell migration.   

 As an extension to the previous computational model addressing elasticity and 

adhesivity in 3D cell migration [101], Zaman et al. incorporated the effects of matrix 

porosity and MMP activity in a lattice Monte-Carlo model [116].  Not surprisingly, the 

model predicted a non-linear dependence of cell speed on ligand density.  However, 

due to the advantages of the modeling technique, it also predicted that directional 

persistence depended biphasically on ligand density.  In their model, persistent 

migration is enhanced in the presence of MMP activity; however, the increase is less 

dramatic if the model incorporates the cell’s ability to deform the matrix and decrease 

local steric hindrance.  While mesenchymal-type migration in physiology involves both 

matrix deformation and proteolysis [115], this study conceptualizes the effects of distinct 

matrix remodeling processes involved during 3D cell migration.   



 Experimentally, in one of the earliest reported, controlled 3D motility studies, 

RGD peptides were conjugated into Type I Collagen matrices, which are naturally 

degradable [117].  Mouse melanoma cells moving in these matrices exhibited a biphasic 

dependence of directional persistence on RGD concentration.  Secondly, in a study 

utilizing a novel engineered PEG-based hydrogel containing MMP degradation sites, 

fibroblasts enhanced MMP release upon TNF-  stimulation, which increased the 

motility persistence length [118].  In the first study, gradually modulating cellular MMP 

activity via pharmacological inhibition, EGF-enhanced human glioblastoma cell 

migration in 3D collagen matrices was compared to 2D collagen-coated substrata [119].  

Surprisingly, EGF stimulation increased directional persistence in 3D collagen, but 

decreased persistence on 2D collagen surfaces.  By modulating MMP activity and 

matrix degradation with a broad MMP inhibitor, authors showed that the EGF-enhanced 

increase in directional persistence arises due to MMP activity, further corroborating 

hypotheses generated in the above computational model [116].  Interestingly, cell speed 

varied minimally with matrix degradation, which was consistent with the minimal 

dependence of cell speed on bulk collagen concentration.  Collagenase itself has been 

shown to exhibit a persistent proteolysis along collagen fibrils [120], perhaps laying the 

molecular foundation for the high dependence of directional persistence on MMP-

mediated ECM degradation.   

 Most of the quantitative parametric studies involving proteolytic migration have 

been gathered on biopolymer matrices [100, 121].  While physiologically relevant, they 

have the distinct disadvantage of convoluting matrix parameters, i.e. the number of 

available proteolysis sites is related to ligand density, matrix porosity, and bulk matrix 

stiffness.  In response to this, a burgeoning number of studies have begun using 

synthetic materials, equipped with adhesive ligands and enzymatically-sensitive 

crosslinks [122].  PEG hydrogels have been particularly popular in this regard for their 

versatile chemistry and quantitative control.  One of the first of such hydrogels 

incorporated integrin-binding peptides, the MT-1 MMP-sensitive peptide sequence 

GPQGIWGQ, and a plasmin-sensitive sequence YKNRD via multi-arm PEG monomers 

[122, 123]. Subsequent studies have utilized step-growth polymerization of PEG 

monomers [124] or different functional end groups [63] to incorporate both adhesion and 



MMP-sensitive sequences, or even full length proteins [85].  Further, collagenase-

sensitive substrates have been incorporated into PEG hydrogels, allowing live 

visualization of collagenase activity during cell migration [125].  PEG hydrogels also 

have the ability to present a variety of receptor-binding biomolecules, with cell-

demanded release.  In collaboration between the Langer and Hubbell groups, an MMP-

responsive PEG hydrogel was used to encapsulate thymosin 4, which induces 

vascular cell survival and upregulation of vascularization genes and MMP secretion, 

mimicking, perhaps, the release of matrix-associated growth factors in natural ECMs.  

Lastly, a recent report describes the use peptide-based hydrogels containing MMP2 

recognition sites and RGD [126].  Parameterizing cell migration using synthetic ECMs is 

still scarce.  However, due to the variety of ECM proteins with specificities for a diverse 

set of proteases, such studies would undoubtedly provide interesting insights into other 

mechanisms for regulating cell migration through presentation of diverse 

physicochemical cues.   

Fueled by innovations in microscopy in the last ten years, interest in 3D cell 

migration has identified non-proteolytic forms of cell migration.  The amoeboid mode of 

migration was first observed in fast-moving lymphocytes, and verified in vitro when 

fibrosarcoma cells were observed to undergo dramatic changes in morphology to allow 

for continued movement in 3D Type I Collagen gels in the presence of a cocktail of 

MMP and protease inhibitors.  This seminal study provided a putative explanation for 

the poor success of MMP inhibitors as metastasis-targeted chemotherapy [127].  This 

mode of migration is integrin-independent, and utilizes a squeezing motion based on 

expansive actin network-based protrusive flowing and myosin-dependent contraction, 

which is required to pass the narrow gaps of ECM pores [20, 24].  While the mechanism 

holds water for lymphocytes, the mesenchymal-amoeboid transition of fibrosarcomas is 

currently disputed, due to the convoluting nature of pepsin-treated Type I Collagen. 

Ensuing studies in native Type I Collagen, which retain the natural crosslinks existent in 

vivo, were not able to replicate this MMP-independent motility [128].  These studies 

reiterate the importance of providing disease-relevant physicochemical cues.  Synthetic 

PEG hydrogels incorporating both RGD and MMP-sensitive peptides, with inherent pore 

sizes orders of magnitude smaller than the smallest cell protrusion, have demonstrated 



that fibrosarcoma cells exhibited rounded and contraction-dependent migration, which is 

only weakly dependent on integrins [63].  While no proteolysis-specific measurements 

were performed, the authors suggest that fibrosarcoma cells in vivo are more rounded 

than they appear in traditional in vitro studies, and synthetic ECMs could provide a 

unique framework to examine these proposed mechanisms of motility and morphology. 

 

 

 



MICROARCHITECTURE 

 

Several groups have highlighted the relevance of studying migration in 3D 

models due to the striking differences drawn between cells in 2D versus 3D matrices 

[129, 130].  Evidence suggests that both cell morphology and adhesion structure 

change dramatically between 2D and 3D cultures [50], perhaps due to the difference in 

structure between a monolayer of adhesive proteins on a flat surface versus the fibrous 

presentation of adhesive sites in 3D.  In a study using the same matrix protein, research 

has shown that migration speeds on 2D collagen-coated surfaces do not correlate with 

speeds in 3D collagen gels, and that protrusion activity is controlled by distinct focal 

adhesion proteins (p130Cas in 2D and zyxin in 3D) in the geometrically distinct 

microenvironments [131].  

From an engineering perspective, although interesting, this study and others 

attempting to decipher the role of geometry on cell behavior separately from other 

biophysical factors are limited by the fact that these parameters are convoluted in 

natural biopolymers, such as Type I Collagen gels.  This is highlighted when comparing 

the work of others in these gels, wherein the mode of matrix polymerization had 

profound affects on migratory phenotype (Figure 4) [119, 132, 133].  Work by Kim et al. 

observed that glioblastoma cells were insensitive to changes in 3D collagen stiffness 

and adhesivity [119].  However, Harley et al. showed that cell motility was dependent on 

the stiffness of collagen matrices that were formed using freeze-drying techniques [132].  

This freeze-drying technique of matrix formation created pore sizes that were in excess 

of 100µm in diameter, so it is likely that cells in these matrices were experiencing a 

quasi-1D migratory microenvironment, rather than achieving true 3D migration.   

To assess the effects of dimensional geometry on motility, Doyle and colleagues 

compared motility on a fibrillar cell-derived 3D matrix, flat PDMS model substrates, and 

PDMS printed lines [133].  They found that cell speeds along the PDMS lines (“1D 

mode”) mimicked speeds along matrix fibers (“3D mode”), and that both of these 

morphologies led to speeds that were much faster than cells on uniform 2D surfaces.  

Work by Liu et al. implies that there is a minimal fiber diameter of 1µm to cause cells to 

polarize along the fiber [134].  Cell motile phenotype on fibers less than 1µm in diameter 



mimicked those on 2D surfaces.  Most interestingly, the dependence of migration on 

ligand density, myosin, and microtubules was different between 1D and 2D migration, 

with 1D relationships most mimicking the 3D environment [133].   

A recent study by Ochsner et al. has attempted to separate geometric influences 

from adhesive and stiffness effects by micropatterning different-shaped wells in PDMS 

substrata [135].  Their evidence suggests that actin filaments contribute to cytoskeletal 

tension, matrix remodeling, and metabolism differently on 2D surfaces versus 3D 

microenvironments.  In fact, their study concluded that the geometric microenvironment 

determined the extent to which cells were sensitive to alterations in matrix stiffness by 

regulating cytoskeletal tension.  Macroporous scaffolds made from inverse-opal 

processing are additional biomaterial tools capable of providing a nondegradable 3D 

environment with independently tunable adhesivity, stiffness, and pore diameters [136, 

137].  Generally made with a PEG background, these scaffolds are inherently 

nondegradable, allowing for long-term cell tracking in a static system.  Although not 

fibrillar, nor necessarily representative of in vivo tissues, these types of scaffolds are 

excellent model systems appropriate for parsing the relationships between cell motility 

and biophysical cues in 3D.  Their macroporosity allows them to be overlaid with other 

degradable materials as well [138].  Recently, these PEG-based macroporous scaffolds 

were used to determine the effects of pore diameters on mesenchymal stem cell (MSC) 

motility [139].  Surprisingly, MSCs were observed to migrate in a non-intuitive fashion, 

where maximum displacement occurred in an intermediate pore diameter that was 

smaller than the spherical cell diameter, and maximum displacement did not correlate 

with maximum observed cell speeds.  Cell speed had biphasic dependence on scaffold 

adhesivity, but only in environments that had very large pore sizes, and likely were a 

quasi-2D environment.   

Thus far, we have discussed 3D synthetic systems that, although are more than 

ninety percent water, consist of a nanoporous mesh.  These mesh sizes, resulting from 

crosslinking between polymer chains, are orders of magnitude smaller than the smallest 

cellular processes, and do not resemble the microarchitecture of an in vivo fibrous 

matrix (Figure 1).  To create synthetic scaffolds that more closely mimic the native 

architecture and the nano- or micro-topology of the ECM, researchers have applied 



electrospinning techniques.  Electrospinning has been in use for more than seven 

decades, but has only recently been employed to create synthetic tissue environments.  

Electrospinning can be used with a variety of polymer systems, and can create fibers 

with diameters ranging from 100nm-10µm, which spans the length scale of many 

natural fibers, such as collagens, chitosan, fibrin, chitin, and fibrinogen (for review, see 

[140]).   Thus far, research with electrospun fibers has been focused on in vivo 

applications for tissue regeneration, but an electrospun polymer system could be used 

to study cell motility mechanisms in a synthetic polymer system with control of fiber 

architecture. 

Self-assembled peptide gels (SAPGs) also form fibrillar matrices, and are able to 

mimic the geometrical features of in vivo collagen fibers.  SAPGs are designed from 

natural amino acids and undergo spontaneous assembly into nanofibers, approximately 

10 nm in diameter.  Their pore sizes are on the order of hundreds of nm, so cell-

mediated degradation is required for productive locomotion.  Although the length scale 

features of these SAPGs are comparable to natural biopolymers, the motility of cells 

within them is markedly reduced in comparison [141].  Addition of osteogenic growth 

factor peptides into SAPGs can increase osteoblast motility alongside proliferation and 

expression of differentiation-specific markers [142].  Much smaller length scales have 

also been shown to be important for regulating cell responses to materials.  Non-

biological TiO2 nanotubes have shown that cells are able to sense material properties 

on the order of nanometers, and have helped parse the relationship between protein 

spacing and cell migration in an inherently non-fouling environment.  Focal adhesion 

formation and cytoskeletal assembly appears to be directly regulated by the nano-length 

scale and presentation of these nanotubes [143, 144], presumably mediated by 

adhesive matrix protein presentation. 

Overall, it’s clear from these studies that the architecture of the microenvironment 

plays a large role in directing cell motility.  In vivo, varied microenvironments exist, 

including relatively constant 2D, planar basal laminas, largely porous, and potentially 

quasi-2D on the length scale of a cell, trabecular bone, fibrous and dense connective 

tissue, etc.  Certain subtypes of cell populations dominate these environments, and 

these microarchitectures likely regulate the motility of these cells in vivo.  Studies in 



which the microarchitecture of the 2D or 3D substrate can be controlled in vitro are 

therefore extremely relevant for the proper understanding and manipulation of the 

migratory behavior.   



TOOL DEVELOPMENT 

 

 Despite the many studies discussed within this review, the vast majority of cell 

motility studies are conducted on traditional glass or plastic surfaces.  One of the 

reasons for the hesitation of the biological community to embrace biomaterial systems is 

the chemistry expertise needed (or perceived to be needed) to create biomaterial model 

systems versus the traditional platforms.  Many scientists prefer naturally derived 

biopolymers, such as Type I Collagen and Matrigel, because although they have 

obvious reproducibility limitations, they are very easy to create, and their fibrous nature 

represents the in vivo microenvironment much better than the nonporous or 

macroporous 3D hydrogels described here.  Certain technological and cost limitations 

also exist in imaging technologies to transfer mechanistic studies, canonically 

performed on thin, flat, and optically clear coverslips into more realistic 3D 

microenvironments.  This section describes some of the more recent advances both 

within and outside the biomaterials community to overcome these hurdles. 

 Numerous biomaterial systems developed by the community have been created 

for tissue engineering purposes, but also show extensive promise as model substrates 

to study mechanisms of cell motility.  For instance, because of their modular peptide 

design, protein-engineered biomaterials can mimic various properties of the natural 

ECM while maintaining the versatility to include non-naturally occurring binding sites for 

some synthetic “plug and play” control [145].  Though touted for their potential impact in 

the field of tissue regeneration, due to their natural bioresorbability and biofunctionality, 

these materials could also be useful for more basic mechanistic questions about cell-

microenvironment relationships due to the inherent molecular-level design control.  

 Confocal and two-photon lasers have taken advantage of UV-mediated 

polymerization of hydrogels to create 3D micropatterned materials (Figure 5A).  Using 

this sophisticated form of photolithography (two-photon laser scanning, or TPLS), Lee et 

al. made 3D gels with precise control over the location of cell-adhesive RGDS in a 

degradable environment [146].  In doing so, they were able to guide the adhesion, and 

therefore migration, of fibroblasts in 3D.  These types of 3D micropatterned gels may 

lead to advances in guided tissue regeneration.  Micropatterning of 3D natural 



biopolymers has already been realized in Type I Collagen gels, originally described by 

Nelson et al. (Figure 5C) [147].  Simple stamping techniques were applied to these 3D 

gels to form reproducible arrays of rectangular cultures.  This geometrical conformation 

of tissue has allowed for very interesting studies of how mechanotaxis and morphogen 

gradients regulate cell invasion in three dimensions [148, 149].    

 As discussed in the durotaxis and haptotaxis sections, the ability of cells to exert 

tractional forces on the surrounding matrix directly affects their ability to migrate.  

Measurements of cell tractional forces, either through the cytoskeleton, or the matrix 

itself, is critical in observing this exerted force.  Traction force microscopy has been a 

powerful tool in the past two decades in observing these tractional dynamics (Figure 5B, 

for review, see [18]).  Substrate deformations can be visualized by incorporating 

fluorescent beads in the hydrogel matrix.  Displacement of the beads is translated to 

tractional forces using continuum mechanics [150].  Traction force microscopy has been 

used to calculate the ability of cells to sense and exert stress in two dimensions via PAA 

substrates [151-153], and to describe cancer mechanosensing [154, 155].  More 

recently, thin film arrays have been developed to measure force exertion by cells 

without the need for embedded beads [156].  Analogous to the widely published post-

arrays, the displacement of the thin films via cell-generated tension can be measured by 

unsophisticated optical microscopy [157]. 

 As the number of interesting convoluting physicochemical parameters increases, 

one lingering limitation of biomaterials-based migration studies is the lack of high-

throughput technology.  The ability to screen chemotherapeutics in 96-well formats, to 

test a wide variety of variables and combinations at once, is common in pharmaceutical 

companies.  This type of format has been recently adapted for migration studies, to 

quantify migration and signaling in response to growth factors and inhibitors [158].  

Though not yet available, adapting this type of technology to a biomaterials system 

would allow one to study these combinatorial agents in an engineered environment with 

control of stiffness, mesh sizes, adhesive background, etc.  



FUTURE OUTLOOK 

 

While in vivo studies have provided the importance of cell migration in the context of 

physiology and disease, in vitro studies have been critical in providing mechanistic 

insights into the migratory process.  The cell biology community has indeed enriched 

our understanding of the molecular components and their interdependencies involved in 

generating motility.  However, the particular complexity of the locomotive process 

discussed in this review calls for an integrative approach for a comprehensive and 

predictive understanding of cell migration.  Studies of cell motility using biomaterials 

systems have demonstrated the power of natural and synthetic materials in contributing 

to the mechanistic regulation of relevant phenomenological parameters, such as cell 

speed and directional persistence.  Unfortunately, synthetic biomaterials systems have 

not yet gained sufficient traction in the biosciences community, often due to a mismatch 

between the pertinent biological questions and the physiological relevance of the 

materials.  With the recent efforts for fostering interdisciplinary work, we posit that this 

gap will soon be bridged.  We urge the biomaterials community to assess the vast 

space of unanswered, biologically relevant questions that will only be answered with 

elegant synthetic techniques.  In turn, the cell biologists can appreciate the immense 

opportunities provided by thoughtfully designed materials, wherein carefully controlled 

microenvironments enable reproducible studies of complex mechanisms.  



FIGURE CAPTIONS 

 

Figure 1 – Cell migration processes in a three-dimensional extracellular matrix.  In 

vivo, cell motility is governed by the coordination of multiple extracellular signals, 

including soluble growth factors, the presentation of insoluble adhesive proteins, and 

the stiffness and extent of crosslinking of the matrix, among others, across multiple 

length scales.  Reviewed here, biomaterials present the unique opportunity to 

quantitatively parse each process for a better understanding of the migratory process in 

a complex microenvironment.  Red arrows designate tunable parameters in an 

engineered biomaterial environment, with the resulting control over cell migration shown 

in italics. 
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Figure 2: Adhesion-mediated cell migration.  In (A), a homogeneous coating of 

surfaces with insoluble biomolecules at various densities (haptokinesis, shown by 

increasing background intensity) regulates cell motile speed in a biphasic fashion for 

many cell types and systems, analogously to chemokinesis.  (B) Haptotaxis, on the 

other hand, is the directed guidance of cell migration by presenting cell adhesive 

molecules on a gradient, analogously to chemotaxis.  (C) On the nanoscale, adhesive 

biomolecules can be spaced at defined intervals with soft lithography to determine the 

spatial requirements for focal adhesion formation to generate functional motility 

(permission from [79] pending). 

 



FIGURE 3 

 

 

 

Figure 3: The stiffness of the matrix regulates cell motility.  PAA substrates were 

used to show the first evidence that the stiffness of an underlying substratum could 

direct cell motility (A-B).  Migrating cells starting on a stiff (A) or soft (B) substrate would 

come to an interface between soft and stiff substrates and preferentially migrate on 

stiffer substrates (permission from [89] pending).  On PAA substrates spanning a range 

of stiffnesses, smooth muscle cells were shown to have a biphasic dependence on 

substrate stiffness (C).  Cell motility was maximized on substrates of intermediate 



stiffness, which further depended on the density of fibronectin coupled to the PAA 

surface (permission from [91] pending).  This biphasic relationship between matrix 

stiffness and cell motility was later shown in prostate cancer cells in 3D Matrigel 

environments (D, permission from [61] pending).  

   



FIGURE 4 

 

 

 

 

Figure 4: Fiber Length-Scale Dictates Geometric Migratory Microenvironment. In 

(A) Kim et al., observed no dependence of glioblastoma motility on 3D collagen gel 

stiffness (permission from [119] pending).  In (B) Harley et. al., used collagen gels with 

pore sizes 1-2 orders of magnitude larger than in Kim et al. (permission from [132] 

pending).  They observed cell speeds that had a biphasic dependence on collagen fiber 

stiffness.  Pore sizes in this microenvironment are an order of magnitude larger than the 

length-scale of the cell, so collagen fibers appear as 1D lines. This may explain the 

discrepancy in observed motility between (A) and (B).  In (C-D) Doyle et al., used 

micropatterned PDMS substrata and cell-generated 3D ECMs to show that cell 

migration is fastest along 1D printed lines and slowest on a non-fibrillar, flat 2D surface 

(permission from [133] pending).   

 

 



FIGURE 5 

 

 

 

Figure 5: Emerging tools for studying matrix control of cell motility.  The 

combination of light sensitive polymerization initiators and confocal microscopy has 

made 3D patterning of hydrogels possible (A, permission from [159] pending).  

Embedding and tracking the displacement of fluorescent beads in compliant substrates 

can be exploited to map tractional forces of migrating cells (B, permission from [160] 

pending).  Patterning in 3D matrices allows for formation of microtissues to study cell 

migration from tissue-like structures (C, permission from [147] pending).   
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