17 research outputs found

    A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae)

    Get PDF
    Background: Conservatism in climatic tolerance may limit geographic range expansion and should enhance the effects of habitat fragmentation on population subdivision. Here we study the effects of historical climate change, and the associated habitat fragmentation, on diversification in the mostly sub-Saharan cucurbit genus Coccinia, which has 27 species in a broad range of biota from semi-arid habitats to mist forests. Species limits were inferred from morphology, and nuclear and plastid DNA sequence data, using multiple individuals for the widespread species. Climatic tolerances were assessed from the occurrences of 1189 geo-referenced collections and WorldClim variables. Results: Nuclear and plastid gene trees included 35 or 65 accessions, representing up to 25 species. The data revealed four species groups, one in southern Africa, one in Central and West African rain forest, one widespread but absent from Central and West African rain forest, and one that occurs from East Africa to southern Africa. A few individuals are differently placed in the plastid and nuclear (LFY) trees or contain two ITS sequence types, indicating hybridization. A molecular clock suggests that the diversification of Coccinia began about 6.9 Ma ago, with most of the extant species diversity dating to the Pliocene. Ancestral biome reconstruction reveals six switches between semi-arid habitats, woodland, and forest, and members of several species pairs differ significantly in their tolerance of different precipitation regimes. Conclusions: The most surprising findings of this study are the frequent biome shifts (in a relatively small clade) over just 6 - 7 million years and the limited diversification during and since the Pleistocene. Pleistocene climate oscillations may have been too rapid or too shallow for full reproductive barriers to develop among fragmented populations of Coccinia, which would explain the apparently still ongoing hybridization between certain species. Steeper ecological gradients in East Africa and South Africa appear to have resulted in more advanced allopatric speciation there

    Intensifying Maize Production Under Climate Change Scenarios in Central West Burkina Faso

    Get PDF
    Combination of poor soil fertility and climate change and variability is the biggest obstacle to agricultural productivity in Sub-Saharan Africa. While each of these factors requires different promising adaptive and climate-resilient options, it is important to be able to disaggregate their effects. This can be accomplished with ordinary agronomic trials for soil fertility and climate year-to-year variability, but not for long-term climate change effects. In turn, by using climate historical records and scenario outputs from climate models to run dynamic models for crop growth and yield, it is possible to test the performance of crop management options in the past but also anticipate their performance under future climate change or variability. Nowadays, the overwhelming importance given to the use of crop models is motivated by the need of predicting crop production under future climate change, and outputs from running crop models may serve for devising climate risk adaptation strategies. In this study we predicted yield of one maize variety named Massongo for the time periods 1980–2010 (historical) and 2021–2050 (2030s, near future) across agronomic practices including the fertilizer input rates recommended by the national extension services (28 kg N, 20 kg P, and 13 kg K ha−1). The performance of the crop model DSSAT 4.6 for maize was first evaluated using on-farm experimental data that encompassed two seasons in the Sudano-Sahelian zone in six contrasting sites of Central West Burkina Faso. The efficiency of the crop model was evidenced by reliable simulations of total aboveground biomass and yields after calibration and validation. The root-mean-square error (RMSE) of the entire dataset for grain yield was 643 kg ha−1 and 2010 kg ha−1 for total aboveground biomass. Three regional climate change projections for Central West Burkina Faso indicate a decrease in rainfall during the growing period of maize. All the three scenarios project that the decrease in rainfall is to the tune of 3–9% in the 2030s under RCP4.5 in contrast to climate scenarios produced by the regional climate model GCM ICHEC-EC-Earth which predicted an increase of rainfall of 25% under RCP8.5. Simulations using the CERES-DSSAT model reveal that maize yields without fertilizer show the same trend as with fertilizer in response to climate change projections across RCPs. Under RCP4.5 with output from the climate model ICHEC-EC-Earth, yield can slightly increase compared to the historical baseline on average by less than 5%. In contrast, under RCP8.5, yield is increased by 13–22% with the two other climate models in fertilized and non-fertilized plots, respectively. Nevertheless, the average maize yield will stay below 2000 kg ha−1 under non-fertilized plots in RCP4.5 and with recommended mineral fertilizer rates regardless of the RCP scenarios produced by ICHEC-EC-Earth. Giving the fact that soil fertility improvement alone cannot compensate for the adverse impact of future climate on agricultural production particularly in case of high rainfall predicted by ICHEC-EC-Earth, it is recommended to combine various agricultural techniques and practices to improve uptake of nitrogen and to reduce nitrogen leaching such as the splitting of fertilizer applications, low-release nitrogen fertilizers, agroforestry, and any other soil and water conservation practices

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore