315 research outputs found

    Adsorption Processes for CO2 Capture: An Overview

    Get PDF
    Adsorption processes for CO2 capture have gained significant attention in the last decade with hundreds of reports on new adsorbents and processes for capture and removal of carbon dioxide from a range of gas streams. To date, the only commercial examples are removal of trace carbon dioxide in gas streams such as LNG and ASU upstream molecular sieve units. There are no commercial examples of the use of adsorbents to capture carbon dioxide by adsorption processes and deliver a stream of high purity carbon dioxide for sequestration or further processing. In this study, we present the range of processing options available for CO2 capture using adsorbents and show how these processes must be adapted to the condition of the feed stream. We also show how these processes make requirements of the adsorbents (or adsorbent systems) and highlight what features new adsorbent should have to help advance adsorption technology. Specific examples of near commercial adsorption processes will be discussed, eg vacuum swing adsorption, high temperature dry regenerable fluidized bed systems, and rapid temperature swing systems

    Novel adsorption processes for carbon dioxide capture within a IGCC process

    Get PDF
    AbstractThere is considerable interest in identifying carbon dioxide capture processes that can be incorporated within Integrated Gasification and Combined Cycle (IGCC) systems. In this paper, two novel adsorption based process configurations are proposed to operate in the temperature window (250–500 ∘C) suitable for an IGCC process after the water gas shift reactor. These process configurations are numerically simulated with an in-house simulator MINSA (Monash Integrated Numerical Simulator for Adsorption), and the simulation results indicate that good performance can be achieved with low operating cost. Carbon dioxide purity of greater than 95% and carbon dioxide recovery of greater than 90% can be obtained by both process options

    Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption

    Get PDF
    AbstractCO2 capture from major stationary emission sites has been studied widely with the increasing realization of the negative impact of greenhouse gas emissions on climate change. In terms of capture technology, solvent scrubbing, membrane processes and adsorption processes are the major contenders with the latter making significant progress over the last decade due to both improved adsorbent and process design and operation. As is well known, capturing CO2 from flue gases at coal-fired power stations by pressure/vacuum swing adsorption is complicated by the existence of significant amounts of water, SOx, NOx and other impurities, which are detrimental to most commercial CO2 selective-adsorbents. Conventional adsorption-based CO2 capture processes rely on using a pre-treatment stage to remove water, SOx and NOx, which adds considerably to the overall cost. In contrast, we report here an adsorption process developed in our laboratory which directly tackles the untreated flue gas without a separate pre-treatment stage by using a propriety multiple-layered bed comprising different adsorbents. The species CO2, H2O, SOx and NOx are processed in the same column within different function layers optimized according to adsorption properties and process conditions. A fully programmable logic controller (PLC) automated three-column pilot plant was built to perform the study with real-time control and data acquisition conducted through Human Machine Interface/Supervisory Control and Data Acquisition (HMI/SCADA) system. Through running continuous experiments, the effects of impurities on process performance such as CO2 purity, recovery and process power are investigated and reported. This is the first in-depth report of the performance of adsorption based capture plants in the presence of impurities found in real flue gas streams

    Cellular Therapy for Wounds: Applications of Mesenchymal Stem Cells in Wound Healing

    Get PDF
    Despite progress in wound treatment including gene therapy, biological dresses and engineered skin equivalents, present treatment options for chronic wounds are restricted and not always effective. For example, inability to get consistent product from the introduced gene, biological covers may give rise to hypoxic conditions and engineered skin models are limited by their construction from substances which are hard to be degraded, and do not always result in complete replication into normal uninjured skin. A growing body of evidence suggests mesenchymal stem cells (MSCs), and their secreted growth factors and microvesicles, may potentiate the wound‐healing process and as such their addition to novel wound‐healing treatments may improve the efficacy of current therapeutic strategies. Recent studies report the ability of bone marrow‐derived MSCs (BM‐MSCs) to migrate and differentiate into skin cells in vivo

    Global Dam Watch: curated data and tools for management and decision making

    Get PDF
    Dams, reservoirs, and other water management infrastructure provide benefits, but can also have negative impacts. Dam construction and removal affects progress toward the UN sustainable development goals at local to global scales. Yet, globally-consistent information on the location and characteristics of these structures are lacking, with information often highly localised, fragmented, or inaccessible. A freely available, curated, consistent, and regularly updated global database of existing dams and other instream infrastructure is needed along with open access tools to support research, decision-making and management needs. Here we introduce the Global Dam Watch (GDW) initiative (www.globaldamwatch.org ) whose objectives are: (a) advancing recent efforts to develop a single, globally consistent dam and instream barrier data product for global-scale analyses (the GDW database); (b) bringing together the increasingly numerous global, regional and local dam and instream barrier datasets in a directory of databases (the GDW directory); (c) building tools for the visualisation of dam and instream barrier data and for analyses in support of policy and decision making (the GDW knowledge-base) and (d) advancing earth observation and geographical information system techniques to map a wider range of instream structures and their properties. Our focus is on all types of anthropogenic instream barriers, though we have started by prioritizing major reservoir dams and run-of-river barriers, for which more information is available. Our goal is to facilitate national-scale, basin-scale and global-scale mapping, analyses and understanding of all instream barriers, their impacts and their role in sustainable development through the provision of publicly accessible information and tools. We invite input and partnerships across sectors to strengthen GDW’s utility and relevance for all, help define database content and knowledge-base tools, and generally expand the reach of GDW as a global hub of impartial academic expertise and policy information regarding dams and other instream barriers

    The origin of animals: can molecular clocks and the fossil record be reconciled?

    Get PDF
    The evolutionary emergence of animals is one of the most significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that animals originated and began diversifying over 100 million years before the first definitive metazoan fossil evidence in the Cambrian. However, closer inspection reveals that clock estimates and the fossil record are less divergent than is often claimed. Modern clock analyses do not predict the presence of the crown-representatives of most animal phyla in the Neoproterozoic. Furthermore, despite challenges provided by incomplete preservation, a paucity of phylogenetically informative characters, and uncertain expectations of the anatomy of early animals, a number of Neoproterozoic fossils can reasonably be interpreted as metazoans. A considerable discrepancy remains, but much of this can be explained by the limited preservation potential of early metazoans and the difficulties associated with their identification in the fossil record. Critical assessment of both records may permit better resolution of the tempo and mode of early animal evolution.JAC and AGL acknowledge support from Natural Environment Research Council (NERC) Fellowships [grant numbers NE/J018325/1 and NE/L011409/1]. SB and JAC acknowledge funding from the Danish National Research Foundation [DNRF53] and the Swedish Research Council [2013-4290]. PCJD was supported by a Royal Society Wolfson Merit Award, a Leverhulme Trust Research Fellowship and a NERC standard grant [NE/F00348X/1]

    Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia

    Get PDF
    The first appearance of skeletal metazoans in the late Ediacaran (~550 million years ago; Ma) has been linked to the widespread development of oxygenated oceanic conditions, but a precise spatial and temporal reconstruction of their evolution has not been resolved. Here we consider the evolution of ocean chemistry from ~550 to ~541. Ma across shelf-to-basin transects in the Zaris and Witputs Sub-Basins of the Nama Group, Namibia. New carbon isotope data capture the final stages of the Shuram/Wonoka deep negative C-isotope excursion, and these are complemented with a reconstruction of water column redox dynamics utilising Fe-S-C systematics and the distribution of skeletal and soft-bodied metazoans. Combined, these inter-basinal datasets provide insight into the potential role of ocean redox chemistry during this pivotal interval of major biological innovation.The strongly negative ÎŽ13C values in the lower parts of the sections reflect both a secular, global change in the C-isotopic composition of Ediacaran seawater, as well as the influence of 'local' basinal effects as shown by the most negative ÎŽ13C values occurring in the transition from distal to proximal ramp settings. Critical, though, is that the transition to positive ÎŽ13C values postdates the appearance of calcified metazoans, indicating that the onset of biomineralization did not occur under post-excursion conditions.Significantly, we find that anoxic and ferruginous deeper water column conditions were prevalent during and after the transition to positive ÎŽ13C that marks the end of the Shuram/Wonoka excursion. Thus, if the C isotope trend reflects the transition to global-scale oxygenation in the aftermath of the oxidation of a large-scale, isotopically light organic carbon pool, it was not sufficient to fully oxygenate the deep ocean.Both sub-basins reveal highly dynamic redox structures, where shallow, inner ramp settings experienced transient oxygenation. Anoxic conditions were caused either by episodic upwelling of deeper anoxic waters or higher rates of productivity. These settings supported short-lived and monospecific skeletal metazoan communities. By contrast, microbial (thrombolite) reefs, found in deeper inner- and mid-ramp settings, supported more biodiverse communities with complex ecologies and large skeletal metazoans. These long-lived reef communities, as well as Ediacaran soft-bodied biotas, are found particularly within transgressive systems, where oxygenation was persistent. We suggest that a mid-ramp position enabled physical ventilation mechanisms for shallow water column oxygenation to operate during flooding and transgressive sea-level rise. Our data support a prominent role for oxygen, and for stable oxygenated conditions in particular, in controlling both the distribution and ecology of Ediacaran skeletal metazoan communities

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    • 

    corecore