Engineering Conferences International ECI Digital Archives

CO2 Summit III: Pathways to Carbon Capture, Utilization, and Storage Deployment

Proceedings

5-24-2017

Adsorption Processes for CO2 Capture: An Overview

Paul Webley The University of Melbourne, Australia, paul.webley@unimelb.edu.au

Ranjeet Singh The University of Melbourne, Australia

Penny Xiao The University of Melbourne, Australia

Follow this and additional works at: http://dc.engconfintl.org/co2_summit3

Recommended Citation

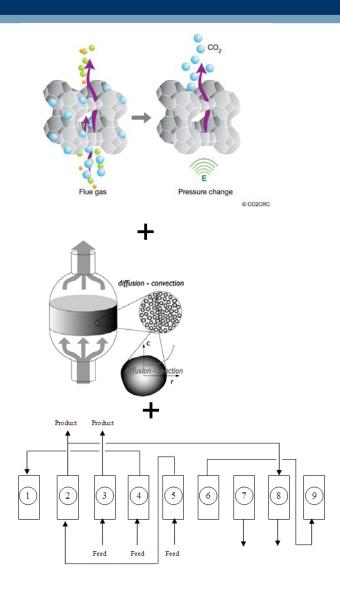
Paul Webley, Ranjeet Singh, and Penny Xiao, "Adsorption Processes for CO2 Capture: An Overview" in "CO2 Summit III: Pathways to Carbon Capture, Utilization, and Storage Deployment", Jen Wilcox (Colorado School of Mines, USA) Holly Krutka (Tri-State Generation and Transmission Association, USA) Simona Liguori (Colorado School of Mines, USA) Niall Mac Dowell (Imperial College, United Kingdom) Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/co2_summit3/41

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit III: Pathways to Carbon Capture, Utilization, and Storage Deployment by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

ADSORPTION PROCESS FOR CO₂ CAPTURE: AN OVERVIEW

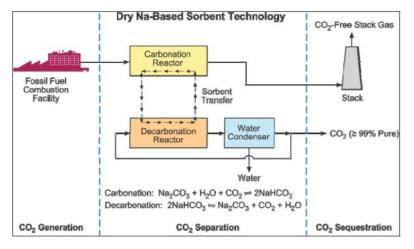
Paul A. Webley, <u>paul.webley@unimelb.edu.au</u> The University of Melbourne, Australia CO2 Summit III May 22-26, 2017

- What is adsorption based capture and how does it work?
- What does it depend upon?
- Where is it used (applications) and how does it perform?
- Why should we use it? What are advantages of adsorbents over conventional capture systems (CAPEX, OPEX)?
- What are the problems?
- Potential Application areas?
- What are RD&D areas for future?

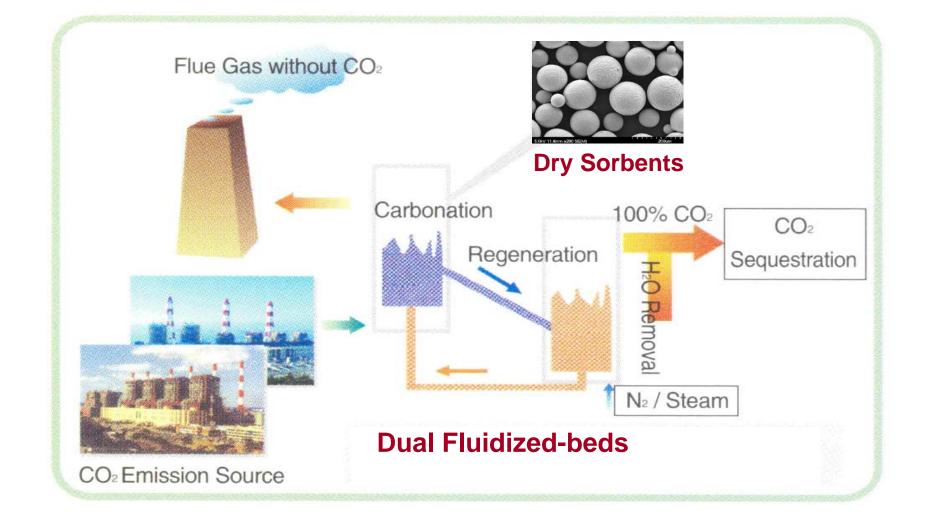


- Expose process gas to porous, dry solid selective to CO₂, removing non-CO₂ gases
- Regenerate solid (temperature, pressure, steam etc) and recover pure CO₂
- Repeat with multiple beds (move the gas or move the adsorbent)

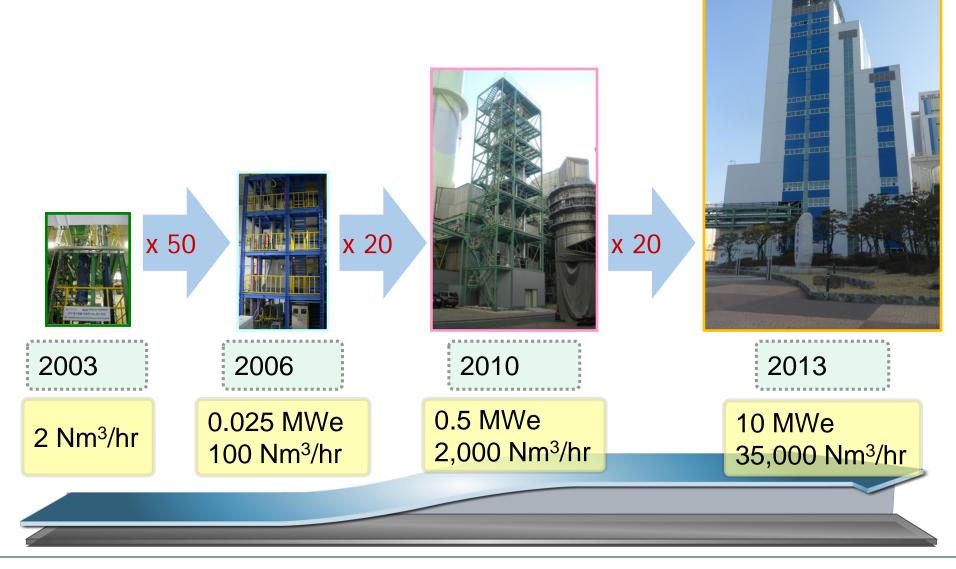
- Excellent adsorbent material (cheap, high working capacity and selectivity to CO₂)
- Effective gas-solid contactor
- Energy efficient regeneration scheme
- Well engineered process and cycle
- Strong relationship between adsorbent, process design and feed properties



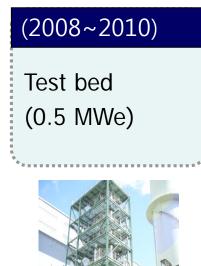
- Temperature Swing Adsorbent Systems (steam regenerated) chemisorbents in rotary beds or circulating beds
 - RTI Research (Research Triangle Ins)
 - KIER (Korean Inst Energy Res)
 - Climeworks
 - Inventys VeloxoTherm
 - TDA alumina sorbents (fixed bed, steam regen)
 - Seibu Giku ceramic wheel
- Pressure and Vacuum Swing Adsorbent Systems (physisorbents in fixed beds)
 - Numerous vendors


RTI's CO2 capture process – the Dry Carbonate Process – sodium carbonate to sodium bicarbonate reaction

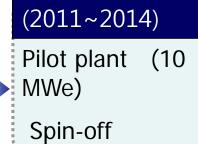
- RTI conducted cycle testing (adsorption and regeneration) of entrainedbed tests at CANMET
- > 90% CO2 removal was demonstrated in the reactor
- The temperature rise (due to exothermic reaction) was limited to $\sim 10^{\circ}$ C
- Sorbent reactivity was maintained over 7 cycles (consistent >90% removal) fully regenerated upon heating to 120°C



Korea Institute of Energy Research (KIER)



Process Development



Road Map

2,000 Nm³/h

 $(3,000 \text{ton } CO_2/\text{yr})$

35,000 Nm³/h

60,000 tCO₂/y

35,000 Nm³/h 60,000 tCO₂/y 1,500,000 Nm³/h (3 Mton CO₂/yr)

Economics of KIERS Capture Process

Tuble 1. Daske design data of Killek 9002 capture process								
500 MW coal fired power plant								
CO2 recovery by dry sorbent								
381.2 MW								
85%								
14%								
20 years								
8,760 hr/yr								
80%								
3,272,500 tCO ₂ /yr								

Table 1. Basic design data of KIER'sCO₂ capture process

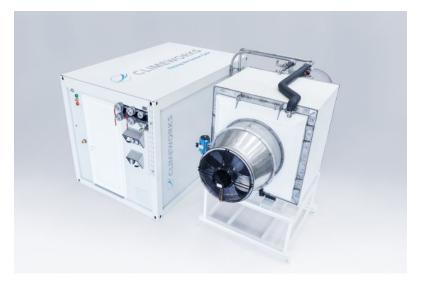
Table 2, Ca	apital cost of KIER's	s CO ₂ canti	ire process by	drv sorbent

-		
Items	Ratio (%)	Amount(1,000\$)
Main equipment	32.5	38,750
Main blower		1,750
Fluidized nozzle		2,083
Bag filter		2,500
Riser		14,168
Main cyclone		833
Reactor		4,250
Sorbent cooler		2,583
SDR		10,583
Construction material	13	15,500
Construction labor	8	9,593
Engineering fee	15	17,930
Construction supervision	10	11,927
CO2 Compression		28,000
Total		121,700

Cost Profile

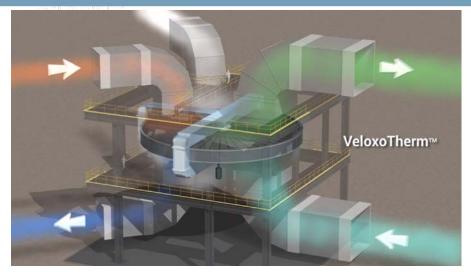
• KIER's cost estimation

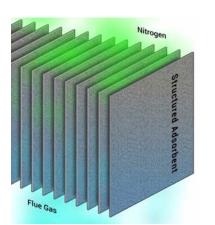
Table 4. Levelized cost and CO₂ capture cost of KIER's CO₂ capture process by dry sorbent


Levelized power cost(\$/MWh)								
Capital cost	6							
Operating cost	17.24							
Compression cost (operation)	9.22							
Total	32.46							
$\overline{\text{CO}_2 \text{ capture cost ($/tCO_2)}}$								
Capital cost	5.20							
Operating cost	14.95							
Compression cost (operation)	8.00							
Total	28.15							

Korean Chem. Eng. Res., Vol. 50, No. 4, August, 2012

THE UNIVERSITY OF **MELBOURNE**


- Direct capture from air
- Amine impregnated cellulose fibres
- Pilot in Hinwil (18 units)
- Adsorbent regenerated by waste heat (95C) and pressure reduced to 0.2 atm
- Fan power requirement 200-300 kWh/t CO2
- Capture 900 t/yr CO2
- 5 cycles/day
- Greenhouses, etc



Inventys VeloxoTherm

- Steam regenerated rotary wheel adsorbent
- diamine-functionalized commercial silica gel

- "1.5 GJ/t CO2"
- Pilot with NRG underway

- CO₂ recovery from H2PSA tail gas, beverage plant, landfill gas
- Vacuum to 0.1-2 atm
- Physisorbents
- Sophisticated cycles to enhance purity to >95%

- Relatively simple, no chemical emissions (low env. footprint), no disposal
- Great flexibility in choosing adsorbents to match feed gas stream properties
- Quick start-up and shut down and offers load following and flexible capture
- Flexible regeneration modes (pressure, temperature, steam, etc) depending on what is available –either thermal or mechanical energy (or both) can be used
- In principle, low energy is possible (absence of water, low Cp of adsorbents, good heat recovery) – esp. calcium looping.

- Scalability conventional configurations (fixed beds, switching valves, blowers) reach their limit at about 400,000 Nm³/h
- A CO2VSA sized for PCC using maximum bed sizes, valves, vacuum blowers, equates to about 80 MW power plant – will need 7 trains for 500MW plant. Limit is low vacuum levels needed lead to large vacuum pumps
- Much better matched to high pressure and high concentration streams with smaller throughput
- TSA processes can be slow in fixed beds and only scale for other configurations (heat transfer limitation) – then have solids handling challenges

- Most adsorbents selective for CO₂ are also selective for impurities such as SOx, HCI, etc – these are often irreversibly adsorbed (may need to remove these before the process)
- Some adsorbents referentially adsorb water reducing their CO₂ capacity. In addition, some may collapse upon exposure to moisture
- Adsorbent cost and manufacturing usually, these are 20-30% of the plant cost (when they are \$2-3/kg). Exotic adsorbents (\$100/kg or more) which are difficult to make in bulk are not realistic for large scale application
- Adsorbent working capacity and working selectivity are key coadsorption of non-CO2 gases contaminate the CO2 product

 VSA processes consume electrical energy – values range from 1-5 GJ/t CO₂. Equivalent to 3-15 GJ/t CO₂, thermal

 TSA processes suffer from slow heat transfer rates and low thermal efficiency – fluidized bed arrangements give low loadings since bed and gas flow is co-current. Best reported energies are in the range 2-5 GJ_{th}/t CO2. Limit is ~ 1 GJ/t CO₂ for fixed bed processes

Exception is calcium looping in which high combustion temperatures can be utilized for regeneration

Opportunities for adsorbent based CO₂ capture

Rejecting CO_2 from high CO_2 content wells (> 50% CO_2)

coal or biomass gasification

High pressure CO₂ removal at high temperature

CO₂ recovery and reuse from dry ice manufacture and food industry

CO₂ recovery from petrochemical, oil, steel, cement, landfill gas, etc

Natural Gas

Rejecting CO_2 from high CO_2 content wells (> 50% CO_2)

enrich CH_4 to high enough value on an off shore platform to pipe to shore for further processing

Desirable features?

- Small footprint is key -> high working capacity
- Minimize loss of valuable component -> <u>high</u> <u>selectivity</u> at high pressure
- Low energy, capital is secondary (use pressure in the stream to do the separation)

Otway Capture Project

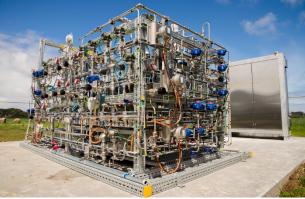
Location: Otway Basin CO2CRC facility Cost : just over \$3m for the whole project

Main Objectives

- To develop cost effective, compact technologies to capture CO₂ mainly from high CO₂ content wells.
- To test new capture materials (membranes and adsorbents) and develop new capture processes

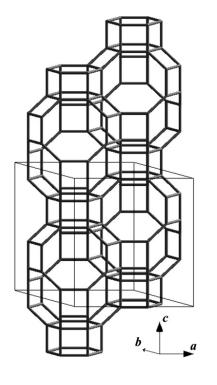

Main Features

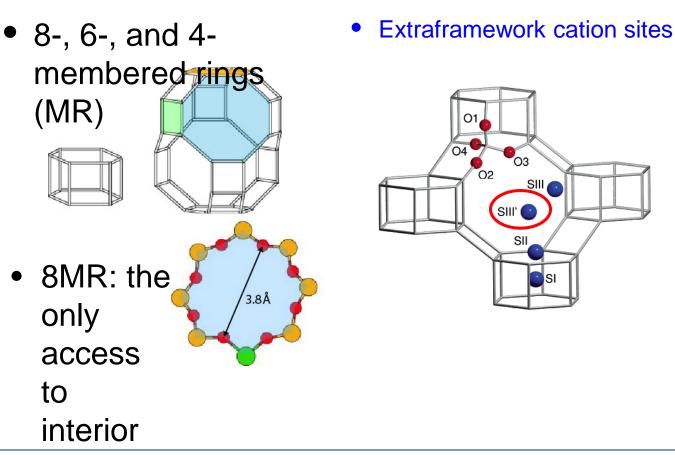
- Feed Pressure: 90 to 20 bar
- Feed CO₂ Concentration: 5% to 80% achieved by CH₄ addition (existing is ~80% CH₄ and 19% CO₂)
- H₂S addition for impurities effect tests



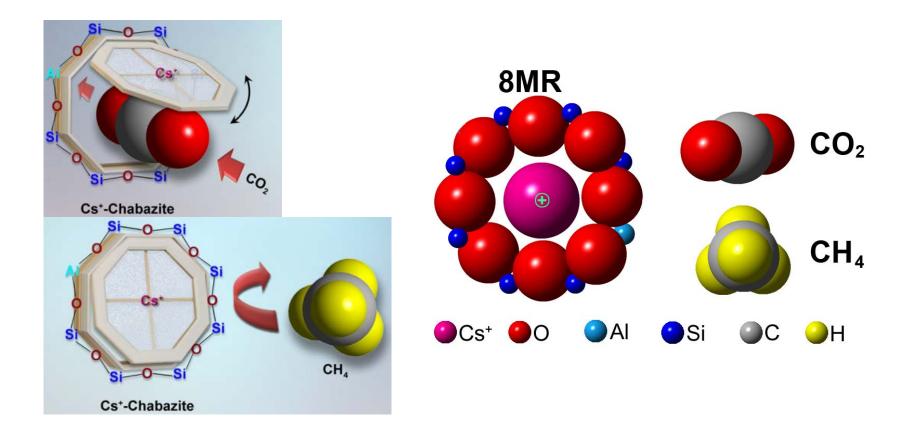
High Selectivity Adsorbents. Nat Gas CO2 Capture

CO2 Capture from Nat Gas – Otway Test skid



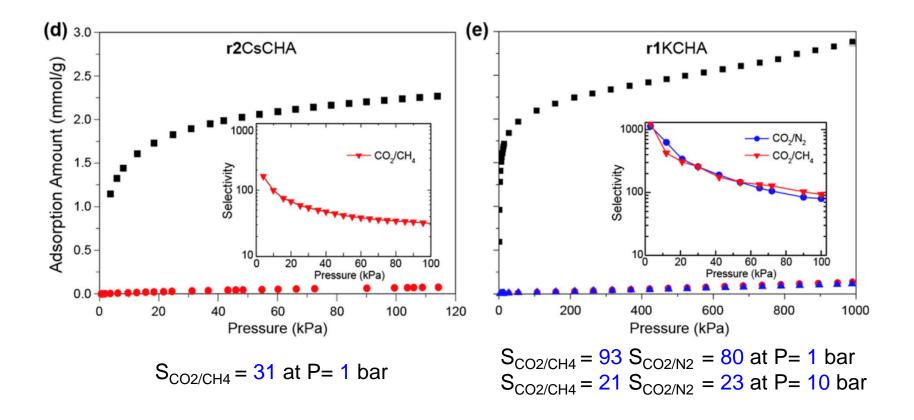


- What adsorbents to use? Need CO₂ (3.4 A) adsorption and no CH₄ (3.8A) adsorption
- Research program commenced in 2008 to find suitable adsorbents: CO₂/N₂/CH₄ adsorption in ion-exchanged chabazite (& LTA)
 - Low temperature pore-blockage by cations
 - CO₂ adsorption via *molecular trapdoor mechanism*


Chabazite $(M_iAl_xSi_{36-x}O_{72})$

CO₂/CH₄ separation on Chabazite Zeolite – "Trapdoor" Sieving

• "Infinite" CO2/CH4 selectivity



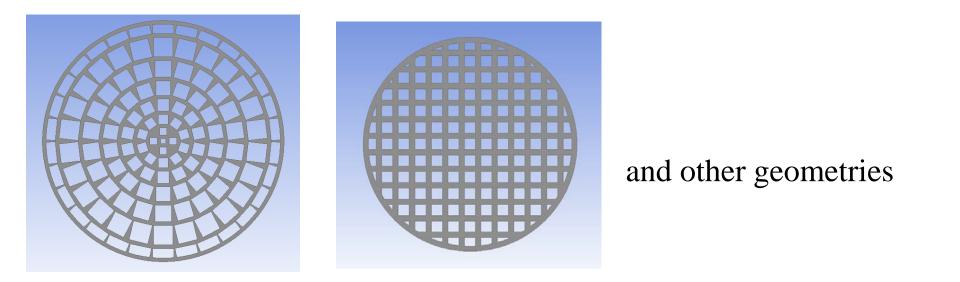
• A brief summary

- Gas molecules can be classified into "strong" or "weak", depending on their interaction strength with the door-keeping cations
- Below T_S, a "strong molecule" can be admitted by inducing cation deviation from pore aperture whereas "weak" molecules cannot, regardless of size, thus discriminating between molecules
- Temporary cation deviation allows one molecule to pass through each time – works for separation of mixture gases

High working selectivity of gas separation



- Improved adsorbents:
 - Higher working capacity and selectivity for CO₂
 - High strength, durability
 - Improved tolerance for impurities
 - LOW COST
 - Low environmental impact of synthesis
- Eg. amine supported adsorbents
- Formed Adsorbents
 - Monoliths
 - Laminates
 - Micron and sub-micron for fluidised bed applications


3D Printing for CO2 Capture

Using 3D Printing technology to build the monolith, and then carbonize and activate to capture CO2.

3D Printing for CO2 Capture

How does CO2 capture efficiency vary with channel geometry?

- Adsorbent contactors
 - Fixed bed: low cost, "Small scale", rotary valves, radial beds
 - Structured adsorbents: rapid swing materials for rapid TSA (hollow fibre with adsorbents embedded), rotary beds
 - Fluidised bed contactors for large scale deployment

- Process Design
 - Improved cycles for high purity CO₂ at modest vacuum
 - Integration of adsorption process with plant producing CO2 (waste heat, combustion heat)
 - Hybrid separation processes
 - Upstream "rough" separation by VSA to concentrate to 70% CO2
 - Downstream low temperature process to produce liquid CO2
 - Recycle vent gas from low temperature process to upstream VSA

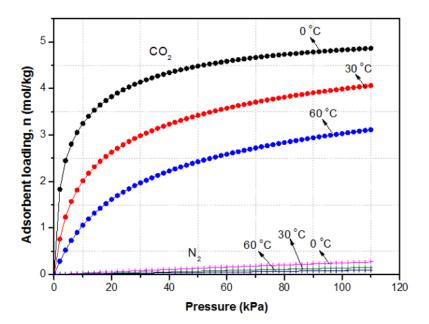


Fig. 1. Adsorption isotherms for CO_2 and N_2 on zeolite 13X at 0, 30 and 60°C.

- Very steep isotherm slope at low partial pressure means deep vacuum (< 3kPa) is needed to produce high purity in simple cycles
 - Excessive power and volume flow rate
- Need to increase the gas phase partial pressure of CO₂ before application of vacuum
- Opportunities for novel cycle design

Purity/Recovery Trade off

50% T_=1838

15%,T_=39S

10

15

20

Desorption pressure(kPa)

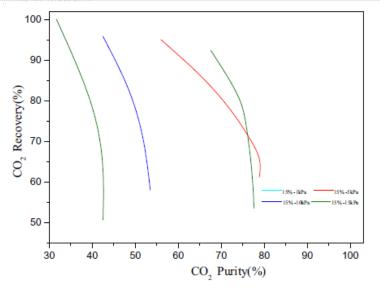
25

50%, T₄₀=39S

30%, Т_{ло}=395

100

95


90

Recovery (%) 08

75

70

65

Recovery/Purity trade-off

Desorption Pressure of 1kPa needed to achieve 95% purity with simple 6 step cycle

Effect of desorption pressure on recovery and purity - different feed concentration

15% T = 3

10

100

95

90

85

80

75 Purity(%)

70

65 60

55

50

45

40

25

50% T._=183S

50%, T_=39S

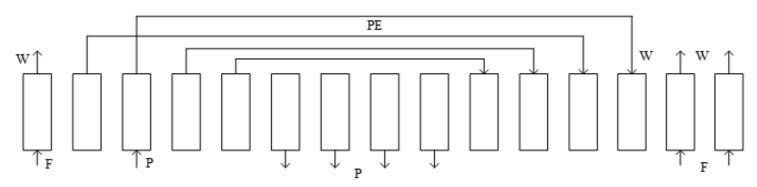
30%, T_{AD}=39S

20

Desorption pressure(kPa)

15

Webley et al., Chem.Eng.J., 2015, 265, 47



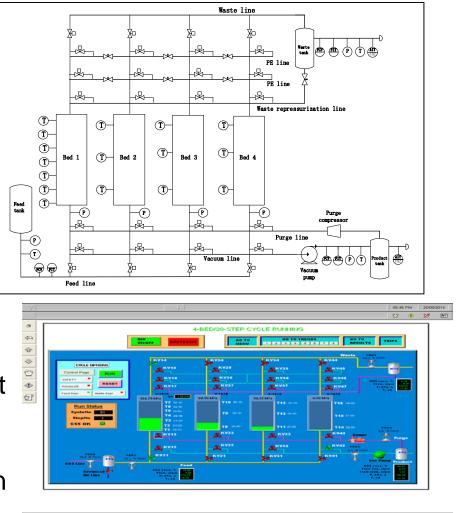
- Multiple reflux streams (pressure equalisation) to enhance recovery and reduce power
- Heavy Reflux to enhance purity before pumpdown
- Recovery of heavy reflux effluent
- Intermediate pressure heavy reflux

Cycle Design

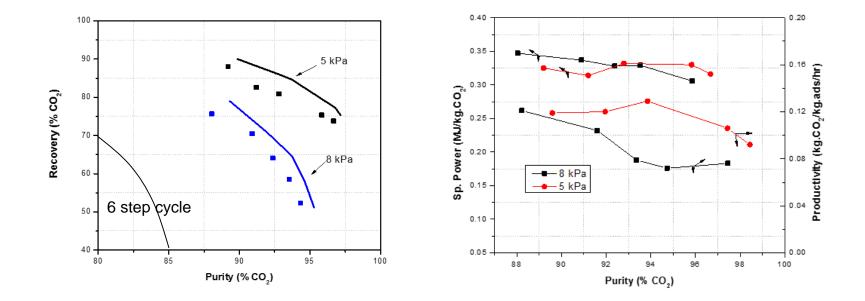
(a)

(b)

B1	F	PE	RN	PE	PE		E	V		PE	ID		PE	ID		PE	<u>Bp</u>	F		
B2	ID	PE	Bp.		F		PE	RN	PE PE		EV			PE	ID			PE	ID	
B3		E	v		PE		ID		PE ID		D	PE BR		F		PE	RN	PE	PE	
B4		ID		PE	I	D	PE	<mark>Bp.</mark>	F			PE	RN	PE	PE	EV				PE
t(s)	60	10	10	10	10	60	10	10	10	10	60	10	10	10	10	60	10	10	10	10


Step times are shown for a cycle run with a total of 80 seconds for adsorption

4-bed PSA/VSA experimental equipment



- 4 column PSA/VSA rig, custom-built
- Packing height 900 mm
- o Diameter 20 mm
- Qnty of adsorbent 200 g per column
- Fully automated via PLC/SCADA system

Recovery, Productivity, Power

- Purity and Recovery significantly higher than best cycles to date
- Specific Power about 30% lower

- Adsorption processes for CO₂ capture have developed rapidly over last 20 years – only starting to see commercial developments now
- PCC not first target there are much better fits elsewhere (high CO2 partial pressure, smaller throughput)
- Considerable opportunities to further develop the technology

MELBOURNE

© Copyright The University of Melbourne 2011