27 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Thermodynamics: The Nineteenth-Century History

    No full text

    Robert Boyle's weather journal for the year 1685

    Get PDF
    Robert Boyle was one of the most influential natural philosophers of the Enlightenment. Although he recorded fragmentary instrumental meteorological readings in his numerous works, it was generally thought that he did not record observations with the regularity seen in the journals of other late‐seventeenth century philosophers. However, in the Boyle archive at the Royal Society in London is a diary that was recorded while Boyle was living in London and which provides a largely complete record of twice‐daily barometer, thermometer and weather readings from December 1684 to January 1686. As far as I can tell, these data have not been converted to modern units or scrutinised in any systematic manner. In this paper I derive corrections for the instrumental observations and examine the weather descriptions. Although the record is short, it does provide a detailed daily snapshot of weather conditions for this 14‐month period around London. The dry conditions that lasted into early summer 1685 constituted the most prominent feature of the weather during that year. The journal indicates that the winter 1684/1685 was cold and frequent frosts and fog were experienced, although the following winter of 1685/1686 was relatively mild; summer 1685 appears to have been relatively cool. Overall, the data attest to the variety of weather conditions that could be experienced in London during the Late Maunder Minimum
    corecore