516 research outputs found

    Sometimes You Cannot Have It All: Party Switching and Affiliation Motivations as Substitutes

    Get PDF
    Existing research on when legislators switch parties reports inconsistent results about motivations for switching (e.g., office, ideology, and votes). I treat the motivations for party switching as substitutes and argue that many of the inconsistencies that persist can be explained by modelling the interactive effects between these motivations. For example, scholars differ in terms of whether they find that electoral considerations are an important determinant of party switching. The conflicting findings on the independent effects of electoral considerations are explained here by demonstrating that these effects are conditional on the level of office benefits a legislators enjoys, as well as the ideological distance between the legislator and party. More generally, the empirical analysis provides strong support for the substitution effect hypothesis. Thus, modelling interactive effects increases our understanding of party switching

    The bubble snails (Gastropoda, Heterobranchia) of Mozambique: an overlooked biodiversity hotspot

    Get PDF
    This first account, dedicated to the shallow water marine heterobranch gastropods of Mozambique is presented with a focus on the clades Acteonoidea and Cephalaspidea. Specimens were obtained as a result of sporadic sampling and two dedicated field campaigns between the years of 2012 and 2015, conducted along the northern and southern coasts of Mozambique. Specimens were collected by hand in the intertidal and subtidal reefs by snorkelling or SCUBA diving down to a depth of 33 m. Thirty-two species were found, of which 22 are new records to Mozambique and five are new for the Western Indian Ocean. This account raises the total number of shallow water Acteonoidea and Cephalaspidea known in Mozambique to 39 species, which represents approximately 50 % of the Indian Ocean diversity and 83 % of the diversity of these molluscs found in the Red Sea. A gap in sampling was identified in the central swamp/mangrove bio-region of Mozambique, and therefore, we suggest that future research efforts concentrate on or at least consider this region.publishedVersio

    Small-Group Learning in an Upper-Level University Biology Class Enhances Academic Performance and Student Attitudes Toward Group Work

    Get PDF
    To improve science learning, science educators' teaching tools need to address two major criteria: teaching practice should mirror our current understanding of the learning process; and science teaching should reflect scientific practice. We designed a small-group learning (SGL) model for a fourth year university neurobiology course using these criteria and studied student achievement and attitude in five course sections encompassing the transition from individual work-based to SGL course design. All students completed daily quizzes/assignments involving analysis of scientific data and the development of scientific models. Students in individual work-based (Individualistic) sections usually worked independently on these assignments, whereas SGL students completed assignments in permanent groups of six. SGL students had significantly higher final exam grades than Individualistic students. The transition to the SGL model was marked by a notable increase in 10th percentile exam grade (Individualistic: 47.5%; Initial SGL: 60%; Refined SGL: 65%), suggesting SGL enhanced achievement among the least prepared students. We also studied student achievement on paired quizzes: quizzes were first completed individually and submitted, and then completed as a group and submitted. The group quiz grade was higher than the individual quiz grade of the highest achiever in each group over the term. All students – even term high achievers –could benefit from the SGL environment. Additionally, entrance and exit surveys demonstrated student attitudes toward SGL were more positive at the end of the Refined SGL course. We assert that SGL is uniquely-positioned to promote effective learning in the science classroom

    The role of chemotherapeutic drugs in the evaluation of breast tumour response to chemotherapy using serial FDG-PET

    Get PDF
    INTRODUCTION: The aims of this study were to investigate whether drug sequence (docetaxel followed by anthracyclines or the drugs in reverse order) affects changes in the maximal standard uptake volume (SUVmax) on [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) during neoadjuvant chemotherapy in women with locally advanced breast cancer. METHODS: Women were randomly assigned to receive either drug sequence, and FDG-PET scans were taken at baseline, after four cycles and after eight cycles of chemotherapy. Tumour response to chemotherapy was evaluated based on histology from a surgical specimen collected upon completion of chemotherapy. RESULTS: Sixty women were enrolled into the study. Thirty-one received docetaxel followed by anthracyclines (Arm A) and 29 received drugs in the reverse order (Arm B). Most women (83%) had ductal carcinoma and 10 women (17%) had lobular or lobular/ductal carcinoma. All but one tumour were downstaged during therapy. Overall, there was no significant difference in response between the two drug regimens. However, women in Arm B who achieved complete pathological response had mean FDG-PET SUVmax reduction of 87.7% after four cycles, in contrast to those who had no or minor pathological response. These women recorded mean SUVmax reductions of only 27% (P < 0.01). Women in Arm A showed no significant difference in SUVmax response according to pathological response. Sensitivity, specificity, accuracy and positive and negative predictive values were highest in women in Arm B. CONCLUSIONS: Our results show that SUVmax uptake by breast tumours during chemotherapy can be dependent on the drugs used. Care must be taken when interpreting FDG-PET in settings where patients receive varied drug protocols

    Corruption and bicameral reforms

    Get PDF
    During the last decade unicameral proposals have been put forward in fourteen US states. In this paper we analyze the effects of the proposed constitutional reforms, in a setting where decision making is subject to ‘hard time constraints’, and lawmakers face the opposing interests of a lobby and the electorate. We show that bicameralism might lead to a decline in the lawmakers’ bargaining power vis-a-vis the lobby, thus compromising their accountability to voters. Hence, bicameralism is not a panacea against the abuse of power by elected legislators and the proposed unicameral reforms could be effective in reducing corruption among elected representatives

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore