467 research outputs found

    The fermi arc and fermi pocket in cuprates in a short-range diagonal stripe phase

    Full text link
    In this paper we studied the fermi arc and the fermi pocket in cuprates in a short-range diagonal stripe phase with wave vectors (7π/8,7π/8)(7\pi/8, 7\pi/8), which reproduce with a high accuracy the positions and sizes of the fermi arc and fermi pocket and the superstructure in cuprates observed by Meng et al\cite{Meng}. The low-energy spectral function indicates that the fermi pocket results from the main band and the shadow band at the fermi energy. Above the fermi energy the shadow band gradually departs away from the main band, leaving a fermi arc. Thus we conclude that the fermi arc and fermi pocket can be fully attributed to the stripe phase but has nothing to do with pairing. Incorporating a d-wave pairing potential in the stripe phase the spectral weight in the antinodal region is removed, leaving a clean fermi pocket in the nodal region.Comment: 5 pages, 6 figure

    A spatial interaction model for deriving joint space maps of bundle compositions and market segments from pick-any/J data: An application to new product options

    Full text link
    We propose an approach for deriving joint space maps of bundle compositions and market segments from three-way (e.g., consumers x product options/benefits/features x usage situations/scenarios/time periods) pick-any/J data. The proposed latent structure multidimensional scaling procedure simultaneously extracts market segment and product option positions in a joint space map such that the closer a product option is to a particlar segment, the higher the likelihood of its being chosen by that segment. A segment-level threshold parameter is estimated that spatially delineates the bundle of product options that are predicted to be chosen by each segment. Estimates of the probability of each consumer belonging to the derived segments are simultaneously obtained. Explicit treatment of product and consumer characteristics are allowed via optional model reparameterizations of the product option locations and segment memberships. We illustrate the use of the proposed approach using an actual commercial application involving pick-any/J data gathered by a major hi-tech firm for some 23 advanced technological options for new automobiles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47207/1/11002_2004_Article_BF00434905.pd

    Precambrian non-marine stromatolites in alluvial fan deposits, the Copper Harbor Conglomerate, upper Michigan

    Full text link
    Laminated cryptalgal carbonates occur in the Precambrian Copper Harbor Conglomerate of northern Michigan, which was deposited in the Keweenawan Trough, an aborted proto-oceanic rift. This unit is composed of three major facies deposited by braided streams on a large alluvial-fan complex. Coarse clastics were deposited in braided channels, predominantly as longitudinal bars, whereas cross-bedded sandstones were deposited by migrating dunes or linguoid bars. Fine-grained overbank deposits accumulated in abandoned channels. Gypsum moulds and carbonate-filled cracks suggest an arid climate during deposition. Stromatolites interstratified with these clastic facies occur as laterally linked drapes over cobbles, as laterally linked contorted beds in mudstone, as oncolites, and as poorly developed mats in coarse sandstones. Stromatolites also are interbedded with oolitic beds and intraclastic conglomerates. Stromatolitic microstructure consists of alternating detrital and carbonate laminae, and open-space structures. Radial-fibrous calcite fans are superimposed on the laminae. The laminae are interpreted as algal in origin, whereas the origin of the radial fibrous calcite is problematic. The stromatolites are inferred to have grown in lakes which occupied abandoned channels on the fan surface. Standing water on a permeable alluvial fan in an arid climate requires a high water table maintained by high precipitation, or local elevation of the water table, possibly due to the close proximity of a lake. Occurrence of stromatolites in the upper part of the Copper Harbor Conglomerate near the base of the lacustrine Nonesuch Shale suggests that these depositional sites may have been near the Nonesuch Lake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72022/1/j.1365-3091.1983.tb00713.x.pd

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.

    Community Biological Ammonium Demand: A Conceptual Model for Cyanobacteria Blooms in Eutrophic Lakes

    Get PDF
    Cyanobacterial harmful algal blooms (CyanoHABs) are enhanced by anthropogenic pressures, including excessive nutrient (nitrogen, N, and phosphorus, P) inputs and a warming climate. Severe eutrophication in aquatic systems is often manifested as non-N2-fixing CyanoHABs (e.g., Microcystis spp.), but the biogeochemical relationship between N inputs/dynamics and CyanoHABs needs definition. Community biological ammonium (NH4 +) demand (CBAD) relates N dynamics to total microbial productivity and NH4 + deprivation in aquatic systems. A mechanistic conceptual model was constructed by combining nutrient cycling and CBAD observations from a spectrum of lakes to assess N cycling interactions with CyanoHABs. Model predictions were supported with CBAD data from a Microcystis bloom in Maumee Bay, Lake Erie, during summer 2015. Nitrogen compounds are transformed to reduced, more bioavailable forms (e.g., NH4 + and urea) favored by CyanoHABs. During blooms, algal biomass increases faster than internal NH4 + regeneration rates, causing high CBAD values. High turnover rates from cell death and remineralization of labile organic matter consume oxygen and enhance denitrification. These processes drive eutrophic systems to NH4 + limitation or colimitation under warm, shallow conditions and support the need for dual nutrient (N and P) control

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore