80 research outputs found

    The fermion-boson map for large d

    Full text link
    We show that the three-dimensional map between fermions and bosons at finite temperature generalises for all odd dimensions d>3d>3. We further argue that such a map has a nontrivial large dd limit. Evidence comes from studying the gap equations, the free energies and the partition functions of the U(N)U(N) Gross-Neveu and CPN1^{N-1} models for odd d3d\geq 3 in the presence of imaginary chemical potential. We find that the gap equations and the free energies can be written in terms of the Bloch-Wigner-Ramakrishnan Dd(z)D_d(z) functions analysed by Zagier. Since D2(z)D_2(z) gives the volume of ideal tetrahedra in 3dd hyperbolic space our three-dimensional results are related to resent studies of complex Chern-Simons theories, while for d>3d>3 they yield corresponding higher dimensional generalizations. As a spinoff, we observe that particular complex saddles of the partition functions correspond to the zeros and the extrema of the Clausen functions Cld(θ)Cl_d(\theta) with odd and even index dd respectively. These saddles lie on the unit circle at positions remarkably well approximated by a sequence of rational multiples of π\pi.Comment: 34 pages, 1 figur

    Finite-Size Effects and Operator Product Expansions in a CFT for d>2

    Get PDF
    The large momentum expansion for the inverse propagator of the auxiliary field λ(x)\lambda(x) in the conformally invariant O(N) vector model is calculated to leading order in 1/N, in a strip-like geometry with one finite dimension of length LL for 2<d<42<d<4. Its leading terms are identified as contributions from λ(x)\lambda(x) itself and the energy momentum tensor, in agreement with a previous calculation based on conformal operator product expansions. It is found that a non-trivial cancellation takes place by virtue of the gap equation. The leading coefficient of the energy momentum tensor contribution is shown to be related to the free energy density.Comment: 10 pages LaTeX 2 eps figures, minor changes in text. Revised version to be published in Phys.Lett. B. email: [email protected] [email protected]

    A novel preference articulation operator for the Evolutionary Multi-Objective Optimisation of classifiers in concealed weapons detection

    Get PDF
    Abstract The incorporation of decision maker preferences is often neglected in the Evolutionary Multi-Objective Optimisation (EMO) literature. The majority of the research in the field and the development of EMO algorithms is primarily focussed on converging to a Pareto optimal approximation close to or along the true Pareto front of synthetic test problems. However, when EMO is applied to real-world optimisation problems there is often a decision maker who is only interested in a portion of the Pareto front (the Region of Interest) which is defined by their expressed preferences for the problem objectives. In this paper a novel preference articulation operator for EMO algorithms is introduced (named the Weighted Z-score Preference Articulation Operator) with the flexibility of being incorporated a priori, a posteriori or progressively, and as either a primary or auxiliary fitness operator. The Weighted Z-score Preference Articulation Operator is incorporated into an implementation of the Multi-Objective Evolutionary Algorithm Based on Decomposition (named WZ-MOEA/D) and benchmarked against MOEA/D-DRA on a number of bi-objective and five-objective test problems with test cases containing preference information. After promising results are obtained when comparing WZ-MOEA/D to MOEA/D-DRA in the presence of decision maker preferences, WZ-MOEA/D is successfully applied to a real-world optimisation problem to optimise a classifier for concealed weapon detection, producing better results than previously published classifier implementations

    GEOMATICS AND CIVIL ENGINEERING INNOVATIVE RESEARCH ON HERITAGE: INTRODUCING THE “ENGINEER” PROJECT

    Get PDF
    This paper aims to introduce the concept and objectives of a recently supported European project entitled “Geomatics and Civil Engineering Innovative Research on Heritage”, in short ENGINEER. The ENGINEER project visions to enhance and extend inter- departmental multidisciplinary research activities of the Department of Civil Engineering & Geomatics of the Cyprus University of Technology through coordination and support actions as well as through targeted research activities with the support of European leading institutions. Project tasks aim to fill research multidisciplinary gaps, push, and extend knowledge into new and innovative fields dealing with the monitoring, digitization, visualization, and preservation of ancient monuments and cultural heritage sites, assisting their protection, promotion, and safeguarding

    COVID-19 Vaccine Uptake Among Residents and Staff Members of Assisted Living and Residential Care Communities-Pharmacy Partnership for Long-Term Care Program, December 2020-April 2021

    Get PDF
    OBJECTIVES: In December 2020, CDC launched the Pharmacy Partnership for Long-Term Care Program to facilitate COVID-19 vaccination of residents and staff in long-term care facilities (LTCFs), including assisted living (AL) and other residential care (RC) communities. We aimed to assess vaccine uptake in these communities and identify characteristics that might impact uptake. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: AL/RC communities in the Pharmacy Partnership for Long-Term Care Program that had ≥1 on-site vaccination clinic during December 18, 2020-April 21, 2021. METHODS: We estimated uptake using the cumulative number of doses of COVID-19 vaccine administered and normalizing by the number of AL/RC community beds. We estimated the percentage of residents vaccinated in 3 states using AL census counts. We linked community vaccine administration data with county-level social vulnerability index (SVI) measures to calculate median vaccine uptake by SVI tertile. RESULTS: In AL communities, a median of 67 residents [interquartile range (IQR): 48-90] and 32 staff members (IQR: 15-60) per 100 beds received a first dose of COVID-19 vaccine at the first on-site clinic; in RC, a median of 8 residents (IQR: 5-10) and 5 staff members (IQR: 2-12) per 10 beds received a first dose. Among 3 states with available AL resident census data, median resident first-dose uptake at the first clinic was 93% (IQR: 85-108) in Connecticut, 85% in Georgia (IQR: 70-102), and 78% (IQR: 56-91) in Tennessee. Among both residents and staff, cumulative first-dose vaccine uptake increased with increasing social vulnerability related to housing type and transportation. CONCLUSIONS AND IMPLICATIONS: COVID-19 vaccination of residents and staff in LTCFs is a public health priority. On-site clinics may help to increase vaccine uptake, particularly when transportation may be a barrier. Ensuring steady access to COVID-19 vaccine in LTCFs following the conclusion of the Pharmacy Partnership is critical to maintaining high vaccination coverage among residents and staff

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore