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Abstract

The incorporation of decision maker preferences is often neglected in the Evolutionary Multi-
Objective Optimisation (EMO) literature. The majority of the research in the field and the
development of EMO algorithms is primarily focussed on converging to a Pareto optimal
approximation close to or along the true Pareto front of synthetic test problems. However,
when EMO is applied to real-world optimisation problems there is often a decision maker
who is only interested in a portion of the Pareto front (the Region of Interest) which is
defined by their expressed preferences for the problem objectives. In this paper a novel pref-
erence articulation operator for EMO algorithms is introduced (named the Weighted Z-score
Preference Articulation Operator) with the flexibility of being incorporated a priori, a pos-
teriori or progressively, and as either a primary or auxiliary fitness operator. The Weighted
Z-score Preference Articulation Operator is incorporated into an implementation of the
Multi-Objective Evolutionary Algorithm Based on Decomposition (named WZ-MOEA/D)
and benchmarked against MOEA/D-DRA on a number of bi-objective and five-objective
test problems with test cases containing preference information. After promising results
are obtained when comparing WZ-MOEA/D to MOEA/D-DRA in the presence of decision
maker preferences, WZ-MOEA/D is successfully applied to a real-world optimisation prob-
lem to optimise a classifier for Concealed Weapon Detection, producing better results than
previously published classifier implementations.

Keywords: Evolutionary Computation, Evolutionary Multi-Objective Optimisation,
Evolutionary Algorithms, Preference Articulation, Concealed Weapon Detection,
Metaheuristics

1. Introduction

The optimisation of the accuracy and efficiency of classifiers in pattern recognition is a
complex problem that is often poorly understood. For example, whilst numerous techniques
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exist for the optimisation of weights in Artificial Neural Networks (ANNs) (such as the
Widroff-Hoff least mean squares algorithm and back propagation), there do not exist any
hard and fast rules for choosing the structure of an ANN - in particular for choosing both
the size (in term of number of neurons) and number of hidden layers used in the network.
However, this internal structure is one of the key factors in determining the efficiency of the
network and the accuracy of the classification. In recent years there has been some interest
in using soft computing techniques such as Evolutionary Algorithms (EAs) to provide a
solution to this problem [22], focussing on evolving the structure of an ANN to solve function
approximation problems. However, complex classification problems often involve trade-offs
between classification objectives that are not well suited to this kind of single objective
approach.

One approach to solving complex engineering problems is to use Evolutionary Multi-
Objective Optimisation (EMO) algorithms to address each of the conflicting objectives si-
multaneously. Typically, these EMO algorithms are run non-interactively with a decision
maker setting the initial parameters of the algorithm and then analysing the results and the
end of the execution process (which can often take hours or days to complete). This approach
has been common since the late 1990s [2, 34, 36] and will lead to a set of potential solutions
distributed across the whole trade-off surface. Whilst this is often appropriate for problems
with a small number of objectives, in real world problems that involve the consideration of
many objectives this trade-off surface can be very large. In these cases, the decision maker
is usually more interested in a sub-region of this solution space that satisfies some domain
specific criteria. However, this can be complicated further by a lack of a priori knowledge
about what trade-offs are achievable. To overcome these problems, progressive preference
articulation methods have been proposed that take into account decision maker preferences
(such as [4]) but these are frequently difficult to integrate with current state-of-the-art EMO
algorithms, and the incorporation of user preferences is frequently disregarded in the EMO
literature [6].

In this research the authors present the optimisation of the ANN architecture for a two
objective problem and a five objective problem. The two objective optimisation is performed
on an ANN that is classifying the radar signals into two groups which are threat and non-
threat. The five objective optimisation is ambitious in the sense that it attempts to optimise
the architecture of a number of ANNs each of which are trained to detect a specific threat
item. This multi-objective optimisation is the more difficult of the two problems but will
give a greater level of information to the user of the detection system. This will allow the
security forces to react to specific threats in a more controlled manner as they will know the
type of threat presented.

This paper introduces a novel method of progressive preference articulation in EMO
algorithms which can provide improved performance in both the execution speed of the al-
gorithm and in the quality of the solutions the algorithm produces. This method is then
integrated into a state-of-the-art EMO algorithm and applied both to current benchmark op-
timisation problems from the literature and to a real-world classification problem in the field
of concealed weapon detection. Section 1.1 introduces EAs and discusses their suitability
to multi-objective optimisation. Section 2 describes the implementation of the progressive
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preference articulation method and discusses its effectiveness when applied to some decep-
tive test functions from the literature. Section 3 provides a full statistical analysis of the
results of the integration of the proposed novel progressive preference articulation operator
with a state-of-the-art EMO algorithm for two suites of benchmark test functions from the
literature. Section 4 shows the effectiveness of the proposed framework in the optimisation
of ANN structures when applied to a complex real-world classification problem in concealed
weapon detection, the results of which are compared against existing published work. The
main results from Section 3 and Section 4 are then summarised in Section 5 and some con-
clusions about the use of and the effectiveness of the proposed framework and its suitability
to the optimisation of ANN structures for classification are drawn.

1.1. Evolutionary algorithms

EAs are a powerful class of stochastic optimisation techniques that incorporate some
of the principles of natural selection and population genetics to converge towards global
optima [19]. They provide an iterative and population-based approach to optimisation that
is capable of both exploring the search space of a problem and exploiting promising solutions
found in previous generations. Typically the exploration of the search space is performed
by using variation operators (such as mutation) that introduce an element of stochasticity
into the optimisation process and aim to prevent premature convergence to local optima. In
contrast, exploitation of promising solutions from previous generations is performed using
a selection operator (and in part, recombination operators) that ensures preference is given
to solutions that are considered fittest from the previous generation.

The robustness of EAs to multi-modal search landscapes containing many local optima
(any other difficulties present in multi-objective search spaces) and the direct use of objec-
tive function information (rather than auxiliary knowledge such as derivative information)
ensures that EAs are effective when applied to many problem types in which conventional
optimisation methods may have difficulty. In addition, their population-based nature helps
ensure that EAs are resilient when faced with noisy search spaces, as each generation con-
tains more information about the shape of the fitness landscape than would be available to
conventional, non-population based methods such as hill-climbing [26].

1.2. Multi-objective optimisation and EAs

The general form of a multi-objective optimisation problem can be described by an
objective vector f and a corresponding set of design variables v; as can be seen in Equation
1. Note that here minimisation can be assumed with no loss of generality.

min
f

(v) = (f1(v), f2(v), f3(v), . . . , fn(v)) (1)

Multi-objective optimisation problems often involve conflicts between multiple objectives,
and as a result it is unlikely that there exists a single optimal solution. Instead, the solution
of a multi-objective optimisation problem often consists of a candidate population of Pareto
optimal points - where any improvement in one objective will result in the degradation of
one or more of the other objectives.
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A set of non-dominated solutions1 generated by the optimiser is known as an approx-
imation set [43] and can be characterised in three key areas [29]. These are illustrated
graphically in Figure 1, and listed below.

• Proximity. This tells the decision maker how close the approximation set is to the true
Pareto front. An ideal approximation set should be as close as possible to the true
Pareto front.

• Diversity. This characterises the distribution of the approximation set both in the
extent and uniformity of that distribution. The ideal approximation set should be
uniformly distributed across the trade-off surface of the problem.

• Pertinence. This criteria measures the relevance of the approximation set to the deci-
sion maker. Ideally the approximation set should contain a number of solutions that
potentially satisfy the decision maker’s expressed preferences.

Figure 1: Proximity, diversity, and pertinence characteristics in
an approximation set in bi-objective space.

Conventional multi-objective optimisation techniques often fail to satisfy these criteria.
For example, the goal-attainment method [18] and the weighted-sum method [24] both only
provide single solutions to the optimisation problem - thus failing to provide a diverse distri-
bution of solutions. However, EAs are well suited to this kind of multi-objective optimisation

1A solution is termed non-dominated if there is no other solutions in the solution set that is superior in
all objectives.
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since they search a population of candidate solutions and are thus capable of presenting a
diverse approximation set to a decision maker [8].

Many theoretical EMO studies only consider a small number of objectives, with most
of the published literature focussing on the bi-objective case. However complex real-world
engineering problems often require the consideration of a larger number of objectives. This
has led to much interest amongst the research community in many-objective optimisation2.
The increased scale of a many-objective optimisation problem means that the pertinence of
the approximation set presented to a decision maker is especially important. The global
trade-off surface for a problem with many conflicting objectives frequently contains many
Pareto optimal solutions, the majority of which may not be in the decision maker’s Region
of Interest (ROI) [29].

1.3. Preference articulation and decision making

The role of the decision maker in the EMO process is usually to choose a single com-
promise solution from the approximation set presented to them. Although there may be
a potentially infinite number of Pareto optimal solutions in the global trade-off surface, in
practice the decision maker will usually only be interested in a small subset of these. There-
fore, allowing the decision maker to focus the optimisation process on relevant areas of the
search space both increases the efficiency of the search effort and reduces the amount of
irrelevant information the decision maker has to consider [15].

The preferences of a decision maker can be incorporated into the optimisation process
in three ways:

• A posteriori

• A priori

• Progressively

A posteriori methods of preference articulation involve the decision maker selecting a
compromise solution from the global approximation set of Pareto optimal solutions found
at the end of the optimisation process, whilst a priori and progressive preference articula-
tion methods aim to achieve a good representation of the trade-off surface in the ROI of
the decision maker. The key advantage of a priori and progressive preference articulation
methods is the reduction in the size of the search space explored by the optimiser because
the search is focussed on a sub-set of the global trade-off surface.

In a priori articulation of preferences the decision maker expresses their preferences
before the start of the optimisation process. However, often the decision maker may not be
sure of their preferences prior to optimisation and, by stating their preferences a priori, the
decision maker may not investigate some areas of the search space that deserve attention.
A better method is often progressive articulation of preferences, which enables the decision

2The phrase many-objective has been used in the operations research community to refer to problems
with more than the standard two or three objectives [14].
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maker to alter their preferences during the search and thus incorporate information that
only becomes available during the search process (such as the exact nature of trade-offs
between objectives).

One of the first schemes for progressive preference articulation in EMO algorithms was
introduced by [17], and extended the Pareto-based ranking scheme used in the Multiple Ob-
jective Genetic Algorithm (MOGA) [16] to allow preferences to be expressed throughout the
run of a EMO algorithm. These preferences were then used in a modified version of domi-
nance which combines the concept of Pareto optimality with a preference operator to rank
the candidate solutions according to both preference information and Pareto-dominance.
This progressive preference articulation method has been used in a wide variety of engi-
neering applications such as the optimisation of robust control strategies for gasifier power
plants [20] and the design of lateral stability controllers for aircraft [31].

2. Weighted Z-score preference articulation

Weighted Z-score (WZ) preference articulation is a novel method of preference articu-
lation based around the use of z-scores3 (or standard scores) from statistics. Traditional
z-score calculations are performed by subtracting the population mean from a datum and
then dividing the result by the population standard deviation as can be seen in Equation
2. Calculating the z-score in statistics requires knowing the population parameters and not
just the parameters of a sample, which is often seen as unrealistic in typical statistics; how-
ever this is not an issue in EMO as it is possible to have a complete representation of the
population at each generation.

z =
(x− µ)

σ
(2)

For the z-score to be useful for preference articulation, some modifications are made to
the way z is calculated. Instead of using the population mean and population standard
deviation to calculate z, the preference information4 that has been expressed by the decision
maker is used (as can be seen in Equation 3) where ρm is the goal for a corresponding
objective value xmn, and N is the number of solutions in the population.

zmn =
(xmn − ρm)√∑N

n=1(xmn−ρm)2

N

(3)

This will enable the calculation of zmn for the objective values of each candidate solution
in an approximation set, resolving the number of standard deviations each solution is from
the decision makers expressed ROI, which will be a positive value when it is outside the
ROI, and negative when within the ROI. Once zmn is calculated for every objective value of
a solution, the zmn values are aggregated into a single fitness value using Equation 4.

3The number of standard deviations a datum is above or below the mean of its data-set.
4A ROI can be defined by a preference vector containing goals for each objective, where if all objective

values of a solution satisfy the corresponding objective goal it is considered within the ROI.
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Vn =

∑M
m=1 zmn

M
(4)

As a demonstration, the CEC09 competition winning MOEA/D-DRA [40] EMO is ex-
ecuted for five generations to generate an initial population for the ZDT1 synthetic test
problem from the ZDT test suite. Using Equation 4 to calculate Vn for each candidate
solution, it is possible to order the initial population by the aggregated number of standard
deviations from the ROI (0.2 for objective 1 and 1 for objective 2 for this example) and then
select a number of solutions (five for this example) to exploit for the next generation. An
illustration of this example can be seen in Figure 2.

Figure 2: Basic Z-score preference articulation
applied to an initial population generated by
MOEA/D-DRA for the synthetic test problem
ZDT1.

Figure 3: Population generated by MOEA/D-DRA
combined with basic Z-score preference articulation
after 2000 function evaluations for the synthetic test
problem ZDT1.

The Z-scores calculated using the simple method in Equation 3 can be used in an EMO as
either a replacement or addition to the fitness scheme used for selection, to focus the search
towards and then within the ROI expressed by the decision maker. This works well for test
problems where there is a low number of objectives and the Pareto set is not complicated
in shape as seen in Figure 3, however its effectiveness is reduced when this basic method is
applied to a more complicated problem with a higher number of objectives. To demonstrate
this, the same basic Z-score preference articulation method is applied to an initial population
generated by executing MOEA/D-DRA for five generations on a five-objective instance of
the WFG5 synthetic test problem from the WFG tool-kit, this is illustrated in Figure 4.

This demonstration illustrates that the basic method of Z-score preference articulation
falls into the trap of selecting the solutions with the overall lowest zmn values. This results
in the minimisation of objectives 1 to 4 as they are already below or close in proximity
to the corresponding preference value ρm, yielding negative or low positive z values, and
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Figure 4: Basic Z-score preference articulation
applied to an initial population generated by
MOEA/D-DRA for the synthetic test problem
WFG5.

Figure 5: Population generated by MOEA/D-DRA
combined with basic Z-score preference articulation
after 2000 function evaluations for the synthetic test
problem WFG5.

due to the conflicting objectives in WFG5, the associated 5th objective value for these
selected solutions are the furthest away from the specified ROI. This issue is amplified
from generation to generation and the result after 2000 function evaluations with the ROI
specified as {2, 5, 2, 2, 2} has been illustrated in Figure 5, where it can be observed that
although objectives 1-4 have been further optimised, there are still no individuals within the
desired ROI due to objective 5.

To solve this ineffectiveness at higher numbers of objectives and on more difficult prob-
lems, a two-phase preference articulation operator has been developed. The first phase
(W-phase) focusses the search on bringing all objectives closer in proximity to the desired
ROI using an absolute and weighted z values. The second phase (Z-phase) takes effect once
a criteria for the number of solutions required within the ROI has been met, this phase uses
the basic z values demonstrated earlier for minimisation within the ROI.

The mathematical procedure for the WZ preference articulation operator in its entirety is
described herein. M defines the number of problem objectives whilst N defines the population
size. X is an M by N matrix of entries xmn, where every xmn refers to a solution’s objective
value:

Xn = 〈x1n, x2n, . . . , xMn〉 (5)

Z is an M by N matrix of entries zmn, where every zmn refers to the result of the z-score
preference articulation operator applied to a corresponding objective value xmn:

Zn = 〈z1n, z2n, . . . , zMn〉 (6)
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To calculate Z, a preference vector P of M entries must be defined, where every entry
ρm refers to the goal which the corresponding objective values xm must satisfy:

P = 〈ρ1, ρ2, . . . , ρM〉 (7)

S is an M by N matrix of entries smn where every smn refers to a logical value indicating
whether the corresponding objective value xmn has satisfied the corresponding goal ρmn
(xnm ≤ ρm):

Sn = 〈s1n, s2n, . . . , sMn〉 (8)

where smn is calculated using:

smn =

{
1, if xmn ≤ ρm

0, otherwise.
(9)

Φ is a vector of N entries, where every φn refers to a logical value indicating whether all
entries of P have been satisfied by a solution Xn.

Φ = 〈φ1, φ2, . . . , φN〉 (10)

where φn is calculated by the product of the entries of Sn:

φn =
M∏
m=1

smn (11)

The scalar Ψ refers to the number of solutions Xn in the population which have satisfied
the preference vector P :

Ψ =
N∑
n=1

φn (12)

T defines the required number of solutions which satisfy the preference vector before
the search changes phase. Whilst Ψ < T the W-phase of the WZ preference articulation
operator takes effect. In this phase, the weighting (1− 1

M
) is only applied to the zmn value if

m corresponds to the entry of Ω with the lowest value. ωm refers to the number of solutions
in the population that have satisfied the corresponding ρm:

Ω = 〈ω1, ω2, . . . , ωM〉 (13)

ωm is the sum of columns M in the matrix S and is calculated using:

ωm =
N∑
n=1

smn (14)

With the entries of Ω calculated, the M by N matrix of weighted scores E can be defined
as:
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En = 〈ε1n, ε2n, . . . , εmN〉 (15)

where the corresponding weighted score εmn for each objective value xmn can be calcu-
lated using:

εmn =

{
zmn

(
1− 1

M

)
if f(ωm, Smn) = 0

zmn otherwise.
(16)

where zmn and ωm are first normalised to real values between 0 and 1:

zmn = f(|zmn|, |Zm|) (17)

using the function f(k,K) where:

f(k,K) =
k −min(K)

max(K −min(K))
(18)

The initial calculation of zmn is the same in both phases (W-phase and Z-phase) and
is defined in Equation 3. The final score Wn of a single solution is the aggregation of the
corresponding εmn entries:

Wn =

∑M
m=1 εmn

M
(19)

.
This two-phase method attempts to move the search towards the production of solutions

that are close in proximity to the ROI and within it, but does not attempt to minimise the
solutions beyond the edges of the ROI. When the number of solutions within the ROI has
satisfied the threshold (Ψ ≥ T ) the Z-phase takes effect. This phase uses Equation 3 to
calculate Zn and then Equation 4 to aggregate the scores into the scalar Vn, this is because
there are adequate solutions (defined by T ) that have satisfied all entries of P . These
solutions can then be further minimised within the ROI. A full example of both phases of
the WZ preference articulation operator is available in Section 2.1.

When the WZ preference articulation operator algorithm is applied to the same initial
population previously generated for WFG5 by MOEA/D-DRA, solutions that are closest to
the ROI are selected with weighted preference for solutions with objectives which have not
yet been satisfied. This has been illustrated in Figure 6, where it can be seen that solutions
with worse values for objective 1-4 have been selected in order to exploit their useful genetic
information to bring objective 5 closer to and within the ROI.

The second phase of the search is activated when the threshold T has been met or
exceeded, for this example T is set to 5 solutions (one tenth of the population size) and
executed for the same 2000 function evaluations as before, the results of the search have
been illustrated in Figure 7.

The results from this experiment show that 25 solutions have been found within the
desired ROI, further investigation has shown that threshold T of 5 solutions was satisfied at
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Figure 6: WZ preference articulation applied to an
initial population generated by MOEA/D-DRA for
the synthetic test problem WFG5.

Figure 7: Population generated by MOEA/D-DRA
combined with WZ preference articulation after
2000 function evaluations for the synthetic test
problem WFG5. 25 solutions have been found in
the desired ROI.

just 300 function evaluations which is when the search switched from the W-phase to the
Z-phase in the WZ preference articulation operator, the results at 300 function evaluations
have been illustrated in Figure 8.

As a preliminary comparison for proof-of-concept MOEA/D-DRA without preference
articulation was executed for 2000 function evaluations on WFG5, the results of which are
illustrated in Figure 9, for which no solutions were found within the ROI, due to lack of
focus toward the desired ROI during the search, this is to be expected in the absence of
preference articulation.

The WZ preference articulation operator is algorithm agnostic and can therefore be
applied to any EMO algorithm as either primary or secondary sorting criteria for use by
a selection operator. As a demonstration, in Figure 10 the WZ preference articulation
operator has been combined with an initial population for the ZDT4 synthetic test problem
from the ZDT test suite, generated by CMA-PAES [30], an algorithm which uses covariance
matrix adaptation for search and adaptive grid archiving for selection and maintenance of a
population. After 2000 function evaluations CMA-PAES combined with the WZ preference
articulation operator has produced the results illustrated in Figure 11. ZDT4 is a test
problem with many deceptive Pareto fronts which makes it computationally expensive for
an EMO algorithm to find an approximation set close in proximity to or along the true-
front, however when searching toward and within a specified ROI it is possible to cut the
computational cost of the search by reducing the search space that is explored, whilst still
resolving solution individuals which are of interest to the decision maker.

The WZ preference articulation operator shows promise in finding solutions within a
desired ROI by focussing the search and preventing exploration of areas of the search space
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Figure 8: Population generated by MOEA/D-DRA
combined with the WZ preference articulation oper-
ator after 300 function evaluations for the synthetic
test problem WFG5. 6 solutions have been found in
the desired ROI.

Figure 9: Population generated by MOEA/D-DRA
without preference articulation after 2000 function
evaluations for the synthetic test problem WFG5.
No solutions have been found in the desired ROI.

that will not be of expressed interest to the decision maker, and it can be observed from
Figures 7 and 9 that in its absence the performance (in regards to the number of solutions
within the ROI) is worse.

The WZ preference articulation operator is a portable and auxiliary operator which
can be incorporated into any host5 algorithm, therefore its performance in finding solutions
within the ROI will ultimately be relative to that of its host and the method of incorporation
(whether it is used as the sole measure of fitness or used in conjunction with other fitness
operators).

2.1. WZ preference articulation operator worked-example

In this section a complete worked-example of both phases of the WZ preference artic-
ulation operator (described in Section 2) is demonstrated. The objective values used in
these examples are not the result of any objection function, they have only been selected for
demonstration and ease of replication.

2.1.1. The W-Phase

This example assumes a five-objective problem (M = 5) with a population of four (N =
4) solutions Xn where T = 2, this population has been presented in Table 1 and plotted in
Figure 12. The preference vector P = 〈1, 3, 4, 2, 1〉 defines the ROI for which the solutions
are desired to be within. In order to decide which phase of the WZ preference articulation
operator takes effect, Ψ needs to be calculated.

5An algorithm that incorporates the WZ preference articulation operator is referred to as the host.
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Figure 10: Basic Z-score preference articulation ap-
plied to an initial population generated by CMA-
PAES for the synthetic test problem ZDT4.

Figure 11: Population generated by CMA-PAES
combined with basic Z-score preference articulation
after 2000 function evaluations for the synthetic test
problem ZDT4.

x1n x2n x3n x4n x5n
X1 0.5 0.5 5.0 2.5 1.5
X2 0.6 0 5.0 3.0 1.4
X3 0.5 3.5 4.5 2.5 1.5
X4 0.8 3.2 4.2 3.0 1.2

Table 1: An example population X of objective val-
ues Xnm

s1n s2n s3n s4n s5n 0 Ψ
S1 1 1 0 0 0 0 φ1

S2 1 1 0 0 0 0 φ2

S3 1 0 0 0 0 0 φ3

S4 1 0 0 0 0 0 φ4

Ω 4 2 0 0 0
f(ω, S) 1 0.5 0 0 0

Table 2: Logical values of matrix S, vector Ω and
it’s normalised values, vector Φ and the scalar Ψ
calculated for population X

Table 2 shows that Ψ for the current population against the preference information has
been resolved as 0 and because Ψ < T the W-phase of the WZ preference articulation
operator takes effect. In order to find out which preference entries ρm have been satisfied
the least by the population, the entries ω of vector Ω are calculated. The entries of Ω are
then normalised to values between 0 and 1 using f(k,K) and it can be seen that ρ3, ρ4 and
ρ5 have the least number of solutions satisfied, therefore the scores for those objectives will
receive weighting.

In Table 3 it can be seen that εmn has been calculated for every solution’s objective value
and has been aggregated per solution into a single score as the scalar Wn. Sorting the entries
of W in ascending order resolves (as calculated by the WZ preference articulation operator)
the proximity of each solution Xn to P in the objective space. In this example, the solutions
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ε1n ε2n ε3n ε4n ε5n W
E1 1.0 0.82 0.8 0 0.8 0.86 W1

E2 0.67 1 0.8 0.8 0.53 0.95 W2

E3 1 0.11 0.3 0 0.8 0.55 W3

E4 0 0 0 0.8 0 0.2 W4

Table 3: The matrix E containing the weighted scores for the population X, and the aggregated weighted
score W for each solution Xn

are ordered (presented in order of ascending proximity to P ) 〈X4, X3, X1, X2〉.
In the event that no solutions are found within the ROI, or if Ψ < T is not satisfied

throughout the optimisation process, then the WZ preference articulation operator will
remain in the W-Phase until the host algorithm meets its termination criteria. The result of
the WZ preference articulation operator remaining in the W-Phase is a final approximation
set of solutions Xn that are close in proximity to to the preference vector P . This allows
the algorithm to still produce an approximation set of feasible solutions that are close in
proximity to the decision makers ROI in the scenario where no solutions exist within the
ROI.
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Figure 12: Parallel-coordinate plot of the Popula-
tion X and preference vector P used in the W-Phase
example.
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Figure 13: Parallel-coordinate plot of the Popula-
tion X and preference vector P used in the Z-Phase
example.

2.1.2. The Z-Phase

This example also assumes a five-objective problem (M = 5) with a population of four
(N = 4) solutions Xn where T = 2, this population has been presented in Table 4 and
plotted in Figure 13. The preference vector P = 〈1, 3, 4, 2, 1〉 defines the ROI for which the
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solutions are desired to be within. In order to decide which phase of the WZ preference
articulation operator takes effect, Ψ needs to be calculated.

x1n x2n x3n x4n x5n
X1 1.5 2.2 3.5 1.5 1.0
X2 0.5 2.5 3.5 1.2 0.5
X3 0 2.5 1.0 1.5 0
X4 1.0 1.0 2.0 0.5 1.0

Table 4: An example population X of objective val-
ues Xnm

s1n s2n s3n s4n s5n 3 Ψ
S1 0 1 1 1 1 0 φ1

S2 1 1 1 1 1 1 φ2

S3 1 1 1 1 1 1 φ3

S4 1 1 1 1 1 1 φ4

Table 5: Logical values of matrix S, vector Φ and
the scalar Ψ calculated for population X

Table 5 shows that Ψ for the current population against the preference information has
been resolved as 3 and because Ψ ≥ T the Z-phase of the WZ preference articulation operator
takes effect. This allows for the minimisation of the solutions within the found discovered
by calculating zmn for every xmn and aggregating them into a single score as the scalar Vn,
so that the solutions Xn may be sorted in order of descending proximity to P .

z1n z2n z3n z4n z5n V
Z1 0.82 -0.71 -0.27 -0.54 0 -0.14 V1
Z2 -0.82 -0.44 -0.27 -0.87 -0.89 -0.66 V2
Z3 -1.63 -0.44 -1.63 -0.54 -1.79 -1.21 V3
Z4 0 -1.76 -1.09 -1.63 0 -0.9 V4

Table 6: The matrix Z containing the z-scores for the population X, and the aggregated z-score V for each
solution Xn

In Table 6 it can be seen that zmn has been calculated for every solution’s objective value
and has been aggregated per solution as the scalar Vn. Sorting the entries of V in ascending
order resolves (as calculated by the WZ preference articulation operator) the solutions Xn

within the ROI and furthest in proximity to P in objective space. In this example, the
solutions are ordered (presented in order of descending proximity to P ) 〈X3, X4, X2, X1〉.

3. Benchmarking WZ-MOEA/D

In mathematics, optimisation is concerned with the selection of optimal solutions to
objective functions. An objective function consists of input arguments referred to as variables
(or genotype) which are computed by one or many mathematical functions to determine the
objective value (or phenotype).

Real-world optimisation problems are divided into one (in the case of single objective
optimisation) or many (in the case of multi-objective optimisation) objective functions in
order to be optimised by an optimisation algorithm. The difficulty of convergence can be
made easier by the bounding of problem variables as this reduces the size of the search
domain.
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In order to determine an EAs robustness, its performance must be assessed on the opti-
misation of objective functions created for the purpose of testing. These test function often
have a scalable number of objectives and problem variables as well as a complex Pareto
shape, and aim to test algorithms on their ability to converge to an approximation set in
the presence of search space difficulties often present in real-world optimisation problems.

To assess the performance of the WZ preference articulation operator and whether its
host algorithm benefits from any improvements, test cases have been designed where two
implementations of MOEA/D-DRA (with and without the incorporation of the WZ prefer-
ence articulation operator) have been executed on a range of commonly used test functions
from the literature and the final approximation set has been analysed in terms of standard
performance metrics. From this point onward WZ-MOEA/D will refer to an implementation
of MOEA/D-DRA [40] with the incorporation of the WZ preference articulation operator.

3.1. Incorporation of the WZ preference articulation operator into MOEA/D-DRA

The WZ preference articulation operator has been incorporated into MOEA/D-DRA in
order to both test the portability of the operator itself as well as the feasibility of preference
articulation on test functions containing many-objectives. MOEA/D-DRA has been de-
signed as an algorithm with the optimisation of test functions consisting of complex Pareto-
sets in mind, it is important to retain the benefits of MOEA/D-DRA by incorporating the
WZ preference articulation operator in a way that assists the selection process rather than
completely replacing it.

WZ-MOEA/D operates in one of two phases (W-phase and Z-phase) dictated by the
WZ preference articulation operator, which take effect depending on when certain criteria
are satisfied, allowing the optimisation process to efficiently spend the function evaluation
budget depending on the current optimisation context. Whilst the number of solutions
satisfying the preference vector P is below the threshold (Ψ < T ) the W-phase of the WZ
preference articulation operator takes effect. In this phase the MOEA/D-DRA’s utility
selection is replaced with a selection of solutions based on their Wn score calculated using
Equation 19. If during the optimisation process the threshold (Ψ ≥ T ) is satisfied then
the Z-phase of the WZ preference articulation operator takes effect, whilst in this phase
a modified implementation of MOEA/D-DRA’s utility selection is used, where the edging
sub-problems are no longer considered as elite and solutions that do not satisfy (φn = 0)
the decision maker’s expressed preferences P are discarded.

Using these two phases WZ-MOEA/D is able to get close in proximity to the decision
maker’s expressed ROI within a small number of function evaluations, and then produce
solutions within the ROI and minimise solutions whilst retaining the diversity features of
MOEA/D-DRA.

3.2. Multi-objective test suites

Two test suites are considered in the comparison of WZ-MOEA/D to MOEA/D-DRA:
the real-valued test problems found in the ZDT bi-objective test suite proposed in [41];
and the scalable WFG multi-objective test suite proposed in [23]. These test suites aim to
incorporate combinations of features in each test problem that a MOEA may potentially
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find difficult to overcome during the optimisation process, allowing assessment of a MOEAs
ability in converging to the Pareto front in the presence of such difficulties.

3.2.1. ZDT test suite

The ZDT test suite contains six test functions which provide sufficient complexity to
compare multi-objective optimisers: ZDT1, ZDT2, ZDT3, ZDT4, ZDT5 and ZDT6, with
each function incorporating a feature that is known to cause the EMO process difficulty in
convergence to the Pareto front, and the maintenance of diversity in the approximation set.
Each test function has two objectives and is concerned with their minimisation.

ZDT1 is a 30 variable problem with a convex Pareto front, ZDT2 is a 30 variable problem
with a non-convex Pareto front, ZDT3 is a 30 variable problem with a Pareto front consisting
of non-contiguous convex parts; ZDT4 is 10 variable problem which tests the ability to
handle multi-modality with 219 local Pareto fronts; and ZDT6 is a 10 variable problem with
solutions non-uniformly distributed along the Pareto front, with the diversity of solutions
decreasing near the Pareto front. ZDT5 was not included in the experiment due to the
requirement for binary represented decision variables.

3.2.2. WFG test suite

The WFG test suite contains 9 test functions (WFG1-9) which are scalable to any number
of parameter variables and objectives.

WFG test functions: 1; 2; 3; 6; 7 and 8 are uni-modal with the remaining being multi-
modal. WFG1 has a mixed convex geometry, WFG2 has a disconnected convex geometry.
WFG3 has a degenerate and linear geometry, and all remaining WFG test functions have a
concave geometry.

3.3. Test cases

A test case consisting of a chosen ROI has been chosen for each test function, to test the
convergence of each algorithm to different areas of objective space. These test cases have
been defined in Table 7 for two-objective problems and Table 8 for five-objective problems.

3.4. Performance assessment

Both WZ-MOEA/D and MOEA/D-DRA have been executed 25 times on each test func-
tion to reduce stochastic noise. This sample size has been selected from evolutionary compu-
tation literature e.g. [7, 38, 39]. The sufficiency of this sample size was tested by producing
a large number of hypervolume indicator value samples by executing WZ-MOEA/D 200
times (the distribution of which has been illustrated in Figure 15) on the WFG6 synthetic
test problem using the method of performance assessment described in this section. These
200 samples were then used to identify the relationship between the standard error of the
mean (SEM) and the sample size using:

SEM =
SD√
N

(20)
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Test Function Region of Interest

ZDT1 1.0, 0.2

ZDT2 0.3, 1.0

ZDT3 1.0, -0.4

ZDT4 0.2, 1.0

ZDT6 1.0, 0.2

Table 7: Test cases defining the ROI used for each
two-objective test function.

Test Function Region of Interest

WFG1 2.5, 1.0, 1.0, 1.0, 1.0

WFG2 1.0, 0.5, 0.5, 0.5, 2.5

WFG3 0.5, 0.5, 1.0, 2.0, 10

WFG4 2.0, 1.0, 6.0, 1.0, 2.0

WFG5 5.0, 5.0, 1.5, 1.5, 1.5

WFG6 2.0, 0.5, 0.5, 1.0, 11

WFG7 0.6, 0.6, 0.6, 8.5, 0.6

WFG8 0.5, 0.5, 0.5, 9.0, 0.5

WFG9 3.0, 1.0, 1.0, 2.0, 1.5

Table 8: Test cases defining the ROI used for each
five-objective test function.

0 25 50 75 100 125 150 175 200
0

0.005

0.01

0.015

0.02

0.025

0.03

Sample size (N)

S
ta

nd
ar

d 
E

rr
or

 o
f t

he
 M

ea
n 

(S
E

M
)

Relationship between SEM and N

Figure 14: Relationship between standard error of
the mean (SEM) and the sample size of hypervol-
ume indicator values from 200 executions of WZ-
MOEA/D on the WFG6 synthetic test problem.
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tions of WZ-MOEA/D on the WFG6 synthetic test
problem.

This relationship has been illustrated in Figure 14 and shows the limited benefit of more
than 25 independent executions of the algorithm on the synthetic test problem.

EAs are inherently stochastic and the initial conditions that ensure the reliability of para-
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metric tests cannot be satisfied [25]. In order to find the significance in contrast amongst the
results obtained by WZ-MOEA/D and MOEA/D-DRA, a non-parametric test (encouraged
by [10, 13]) for pairwise statistical comparison has been used. The Wilcoxon signed-ranks
[37] non-parametric test (counter-part of the paired t-test) has been used with the statis-
tical significance value (α = 0.05), this test ranks the difference in performance of the two
algorithms over each approximation set and has been used in the comparison of EAs in the
literature [5, 9, 32].

The population at each generation of each execution has been scored using the hyper-
volume indicator, with the reference point set as the decision makers specified ROI (defined
in the test case). The hypervolume indicator (or s-metric) is a performance metric for indi-
cating the quality of a non-dominated approximation set, introduced by [42] and described
as the “size of the space covered or size of dominated space”. It can be defined as [35]:

Sfref (X) = Λ

( ⋃
Xn∈X

[
f1(Xn), f ref1

]
× · · · ×

[
fm(Xn), f refm

])
(21)

Where Sfref (X) resolves the size of the space covered by approximation set X, f ref ∈ R
refers to a chosen reference point and Λ (.) refers to the Lebesgue measure. This has been
illustrated in Figure 16 in two-dimensional space (to allow for easy visualisation) with a
population of 3 solutions.
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3

 fref

Figure 16: An example of the hypervolume indicator
in two-dimensional objective space.
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Figure 17: An example of the contributing hypervol-
ume indicator in two-dimensional objective space.

The hypervolume indicator is selected because it is scaling independent and requires no
prior knowledge of the true Pareto front, this is important when working with real-world
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problems which have not yet been solved. The hypervolume indicator is currently used in
the field of multi-objective optimisation as both a performance metric and in the decision
making process [21, 33].

The hypervolume indicator allows performance comparison between WZ-MOEA/D and
MOEA/D-DRA based on which algorithm covers the greatest amount of the search space
within a specified ROI, by using the preference vector P described in Equation 7 in place of
f ref when calculating the hypervolume indicator value. This will be the basis for identifying
which algorithm outperforms the other, an example of this measure has been given in Figure
16.

The contributing hypervolume indicator is an adaptation of the hypervolume indicator
in order to be used as sorting criteria for selection operators, it has been used in the s-metric
Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [12] and the Hypervolume
Estimation Algorithm for Multi-Objective Optimisation (HypE) [1]. The contributing hy-
pervolume indicator assigns each solution in an approximation set with the size of the space
covered by each solution exclusively, with this information the population can be sorted
by the most dominant and diverse solutions. This has been illustrated in Figure 17 in two-
dimensional space with a population of 3 solutions. The contributing hypervolume indicator
is used later in Section 4 to reduce the size of the final approximation set produced by the
optimiser to a size that will not overwhelm and confuse the decision maker.

3.5. Results

Plots for the results of the test cases have been illustrated in Figure 18 for two-objective
test problems and in Figure 19 for five-objective test problems. Each plot presents the mean
hypervolume covered within the ROI at each generation for 25 executions on a test function,
for both WZ-MOEA/D and MOEA/D-DRA.

Table 9 presents information regarding the p-value resolved by the Wilcoxon signed-ranks
non-parametric test for the considered synthetic test problems and a symbol indicating the
observation of the null hypothesis, ’+’ indicates that the null hypothesis was rejected and
WZ-MOEA/D displayed statistically superior performance at the 95% significance level (α
= 0.05) on the considered test synthetic test function. In all cases the null hypothesis was
rejected and a statistical significance of greater than 95% was observed.

From a general observation of the results it can be seen that WZ-MOEA/D outperforms
MOEA/D-DRA on each test function using the hypervolume indicator. WZ-MOEA/D suc-
ceeds in finding solutions in the specified ROI in fewer function evaluations than MOEA/D-
DRA, even when MOEA/D-DRA fails to find any solutions in the ROI throughout the
entire search process (within the function evaluation budget). The populations found by
WZ-MOEA/D on each test function cover more of the hypervolume within the specified
ROI than MOEA/D-DRA, and because of this the decision maker will have a more diverse
set of candidate solutions to make a decision from, giving them a better idea of the trade-offs
within the specified ROI with a better spread throughout the approximated front.

The results show that the test function posing the greatest difficulty in finding a single
solution within the specified ROI is ZDT4, this can be seen in Figure 18 where the plot
of the mean hypervolume indicator value over the number of generations indicates that of
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Figure 18: The mean hypervolume indicator value of WZ-MOEA/D and MOEA/D-DRA populations at
each generation for bi-objective ZDT test suite.

all the test functions ZDT4 required each algorithm to search for more generations before
finding solutions within the ROI. This is to be expected as a result of ZDT4’s multi-frontal
nature [11] which is a struggle for most EMO algorithms; however, when comparing WZ-
MOEA/D to MOEA/D-DRA it is clear that WZ-MOEA/D can get to the specified ROI
faster and produce a final approximation set of better hypervolume indicator quality. In
Figure 20 the populations for WZ-MOEA/D and MOEA/D-DRA have been plotted for an
execution for which the hypervolume indicator value was close to the mean of each respective
algorithms 25 executions, these plots show that WZ-MOEA/D’s final approximation set has
converged through more of the deceptive Pareto fronts than MOEA/D-DRA, with more
candidate solutions, better diversity, and also including more solutions near the extremes of
the ROI. A similar result can be seen in Figure 21 where the worst of the 25 populations for
WZ-MOEA/D and MOEA/D-DRA have also been plotted for ZDT4, in this case however
MOEA/D-DRA has only found a single solution within the ROI where as WZ-MOEA/D
has completed with better proximity and diversity.
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Test Function p-value

ZDT1 2.2857e-09 +

ZDT2 2.5742e-09 +

ZDT3 1.1773e-07 +

ZDT4 1.309e-07 +

ZDT6 0.00051446 +

WFG1 7.6832e-08 +

WFG2 0.022656 +

Test Function p-value

WFG3 6.132e-07 +

WFG4 0.0012886 +

WFG5 5.806e-09 +

WFG6 5.8255e-05 +

WFG7 0.00023161 +

WFG8 1.0932e-06 +

WFG9 1.7323e-06 +

Table 9: Results from pairwise comparison of the final approximation sets of both considered algorithms on
each synthetic test function using the Wilcoxon signed-ranks non-parametric test.

The results for WFG6 show that both WZ-MOEA/D and MOEA/D-DRA find solutions
within the ROI very early in the search, taking less than 50 generations on average. This is
the result of relaxed preferences used in the test case, in particular for the 5th objective where
the preference was set to 11 or below. In general, both WZ-MOEA/D and MOEA/D-DRA
find the ROI in a similar number of function evaluations, with WZ-MOEA/D converging to
populations with better hypervolume indicator quality very early on in the search. In the
worst performing (in regards to hypervolume indicator quality) execution of each algorithm
on WFG6, the plots for the final population show that WZ-MOEA/D in Figure 23 finds
many solutions within the ROI with good diversity to offer the decision maker with an idea
of the trade-offs, where as MOEA/D-DRA in Figure 22 fails to find a solution in the ROI.

In some of the results it can be seen that the achieved hypervolume indicator value os-
cillates throughout the optimisation process, for example in WFG4 and WFG7. This occurs
because both WZ-MOEA/D and MOEA/D-DRA are not hypervolume indicator based al-
gorithms and instead use a weighting based selection method, therefore the hypervolume
indicator is not taken into account in any point of the optimisation process, unlike algo-
rithms such as CMA-PAES and MO-CMA-ES, which take the contributing hypervolume
indicator into account during their selection process.
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Figure 19: The mean hypervolume indicator value of WZ-MOEA/D and MOEA/D-DRA populations at
each generation for five-objective WFG test suite.
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Figure 20: Population generated by worst run
of WZ-MOEA/D and MOEA/D-DRA on ZDT4
within the ROI, with a hypervolume indicator value
close to the mean of the 25 executions.

Figure 21: Population generated by worst run
of WZ-MOEA/D and MOEA/D-DRA on ZDT4
within the ROI, with a hypervolume indicator value
of 0.000063568 and 0.0159 respectively.

Figure 22: Population generated by worst run of
MOEA/D-DRA on WFG6, with a hypervolume in-
dicator value of 0.

Figure 23: Population generated by worst run of
WZ-MOEA/D on WFG, with a hypervolume indi-
cator value of 0.0485.
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4. Application to weapon detection

Concealed Weapon Detection (CWD) is an important area of research in the defence and
security community. This is a result of a number of high profile terrorist attacks which have
resulted in loss of life and damage to public infrastructure.

The threat faced by the security forces is diversifying and current technology is strug-
gling to meet new requirements. The technologies currently in use at airports include metal
detection portals, millimetre wave imaging systems, x-ray scanners and ion mobility spec-
trometers. These technologies are all designed to detect specific threats to security and
collectively they are used to satisfy the current requirements for screening in the aviation
industry. The use of multiple technologies in airports has led to choke points with lengthy
waits at security checkpoints, making this method of screening undesirable and it is only
used in places where it is absolutely necessary. Recently the threat of terrorism has spread
and many more public areas and government buildings are becoming targets, even sporting
events have now become targets. This presents a real problem as the best examples of mass
screening are demonstrated at airports and as mentioned previously this type of screening
leads to choke points and delays. Therefore there is a requirement for a fast method of
screening people in crowded areas, that is capable of detecting a diverse range of threats.

One method of detecting a diverse of range concealed weapons in crowded areas in real-
time is to use small portable radars. A number of radar systems have been developed for
this purpose [3] and [27]. These radars use multiple methods of detecting concealed weapons
such as time domain reflectometry and the exploitation of polarisation changes induced by
complex objects concealed on the human torso under clothing.

The radar used in this work is constructed of a Vector Network Analyser (VNA) with
pyramid horn antennas connected to the VNA using suitable cabling. A laptop is used to
control the VNA and then classify the signals. The radar signals are analysed on the laptop
using pattern recognition applied to the time resolved signals in the form of an ANN, this
set-up has been illustrated in Figure 24. This method has been discussed in detail in a
previous publication [28].

Laptop Target

1. TX/RX

2. RX

VNA

Figure 24: System block diagram illustrating the arrangement of the transmitted and receiver horn antennas.

One of the shortcomings of this method is that the optimisation of the ANN architecture
has previously been performed using trial and error. This has been done by increasing the
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number of hidden layers in the ANN and also increasing the number of neurons on each
of these layers. A set of validation data was fed into the ANN each time a new layer or
neuron was added and the true positive and false positive rates were recorded. The best
architecture was selected by weighing the achieved true positive rate against the cost in
false alarm rate. Another issue exists with the training of the ANN, which tends to be
inconsistent. This is caused when an initial guess at the weights and biases is taken. As a
result of the randomness of this guess the convergence can be to a local minima rather than
the global.

It is of great importance that the false alarm rate is kept low, typically below a few
percent, for security screening of large volumes of people. This is due to the action that
must be taken once a potential threat has been identified. This action could range from
further investigation, e.g. stop and search, to the evacuation of a crowded public area. If
the false positive rate goes above a few percent the inconvenience to the security forces
and general public would render the method ineffective. Therefore the primary objective in
optimising the ANN architecture must be the reduction of the false positive rate.

The second objective in the optimisation of the ANN architecture must be the preserva-
tion of the true positive rate for targets of interest. The targets that should be detected by
the radar include knives and guns. It is unfortunate that knives and guns are seized by the
security forces far too frequently and pose a significant threat to the safety of the general
public. The damage that can be caused with these weapons is considerable and these targets
are easily concealed upon the human body.

4.1. Encoding the problem

In order to use evolutionary optimisation to optimise the topology and weights of the
ANN classifier for concealed weapon detection, the ANNs topology and weights must be
encoded into a real-valued chromosome, which can then be subjected to the various evolu-
tionary operators used in the optimisation process and then decoded for evaluation. Figure
25 illustrates the chromosome structure used to store the problem parameters for an ANN
with 2 output neurons, a maximum of 2 layers, and 8 input neurons.

HL1Neurons HL2Neurons ILWeights HL1Weights
HL2Weights HL1Bias HL2Bias OLBias

Figure 25: Encoded chromosome for an ANN consisting of 2 hidden layers (HL), input layer (IL), 2 neurons
on the output layer (OL), and associated biases.

Parameter boundaries are also required to restrict the number of hidden layers, neurons
per hidden layer, and ranges for the weights and biases within a lower and upper limit. All
hidden layers but the last can contain a number of neurons ranging from none to twice the
number of input neurons as seen in Equation 22, and the last hidden layer must contain a
minimum of neurons equal to the number of inputs neurons as seen in Equation 23, this
means each candidate network generated by the optimiser must have at least one hidden
layer, preventing the generation of benign networks which would waste function evaluations
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throughout the entire optimisation process. Finally, each weight or bias is restricted to the
same boundary shown in Equation 24.

b(1...(HL− 1)) = {x ∈ Z | 0 ≤ x ≤ 2i} (22)

b(HL) = {x ∈ Z | i ≤ x ≤ 2i} (23)

w = {x ∈ R | −5 ≤ x ≤ 5} (24)

For the ANN configuration used in this network, each candidate solution contains 452
variables, with the first 2 defining the number of hidden layers and the number of neurons
on each respectively, the following 128 variables defining the weights for the input layer, 256
for the first hidden layer, and 32 for the final hidden layer.

Regardless of the topology of the candidate solution ANN (which in this case is defined
by the first 2 genes of the encoded chromosome) the maximum number of weights and
biases will be stored with each chromosome, however not all genotypes will manifest and be
expressed as phenotypes as only the weights and biases required to configure the candidate
solutions ANN topology will be decoded and used. These unused weights and biases will
remain unexpressed in the phenotype until the first two genes allow them to manifest, and
can go through many generations as dormant genes, this introduces the interesting feature
of atavism6 into this problem.

At each function evaluation a chromosome is decoded and used to create an ANN, this
ANN is then used to classify the training data and the objective information is extracted
based on the ANN result set.

4.2. Comparison to existing solution

To assess the performance of the optimisation algorithm when applied to this novel real
world problem a benchmark must be taken. The performance of the optimised ANN is
compared to previously published data [28], the experimental methodology used to obtain
this data is explained here in.

The radar used in [28] is a novel multi-polarimetric frequency modulated continuous
wave radar operating in the K Band (14-40 GHz). The radar illuminates a person using two
linear polarisations which are switched. The use of two illuminating polarisations has been
shown to significantly improve detection rates [28]. The reflected signal is then recorded in
four polarisations, which are co and cross polar to each of the illuminating polarisations.
The gain and phase of the reflected signals are then recorded with respect to the outgoing
signal, in the frequency domain. Once collected the gain and phase information is used to
generate an array of complex numbers that are then time resolved using an Inverse Fast
Fourier Transform (IFFT). Examples of typical radar signals from the human body with
and without concealed weapons are given in Figures 26 and 27.

The radar signals from the body with and without a concealed weapon vary with the
aspect in which the person and weapon are presented in the illuminating radar beam. To

6“Atavism is the tendency to revert to ancestral type. In biology, an atavism is an evolutionary throwback,
such as traits reappearing which had disappeared generations before.”
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Figure 26: Typical co polarised radar signals from a
body alone, a body with a concealed gun and finally
a body with a concealed knife.

Figure 27: Typical cross polarised radar signals from
a body alone, a body with a concealed gun and fi-
nally a body with a concealed knife.

compensate for this variance many scans must be taken whilst a person is moving in the beam
and an accurate representation of the real operating conditions are given to the ANN. The
large amounts of data obtained in the collection of training scans makes the problem difficult
for the ANN to converge to a solution that is robust but without over training the ANN. In
[28] a Principal Component Analysis (PCA) data reduction technique was integrated into
the classification algorithm. The PCA data reduction was applied to the time resolved radar
signals to obtain a set of Eigenvalues and Eigenvectors. The Eigenvalues were then used
to train the ANN to classify the data into two classes, namely ’threat’ and ’non-threat’. A
threshold was then applied to the output neuron of the ANN and an alarm was triggered
when the output value became larger than the threshold.

In [28] the architecture of the ANN is a 3 layer feed-forward network with as many input
neurons as there are significant principal components (typically 5 or 6), the hidden layer
has one extra neuron than the input layer and the output layer has a single neuron. The
ANN was trained using a constant gradient descent back-propagation method. The training
set was constructed of eigenvalues corresponding to 700 multi-polarimetric radar scans. Of
these 700 scans, 100 were taken with a body without a concealed weapon and the other
600 scans with a concealed weapon. There were two different weapons used in the training
set, which were a knife and a gun (300 scans of each). The validation of the ANN was
performed using a dataset with the same number of scans and same distribution of body
with and without a concealed weapon. The validation dataset was constructed using radar
scans which the ANN had not seen a priori.

4.2.1. Results

WZ-MOEA/D has been used to optimise the classifier parameters for classification of
concealed weapon detection with two objectives: true positives and false positives. The final
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population produced by the optimiser has been plotted in Figure 28, where it can be seen
that a number of trade-off solutions have been found with the ROI, resulting in a Pareto
optimal approximation set. When compared to the benchmark plot it can be observed that
it is Pareto dominated by every candidate solution in the final population, this means that
the optimiser has found a diverse set of solutions which are all an improvement on the
existing solution. The same candidate solutions have also been plotted in Figure 29 without
conversion of all objectives for minimisation, this plot is what was presented to the decision
maker when selection of a successful candidate solution was required.

Figure 28: Population generated by MOEA/D-
DRA combined with WZ preference articulation af-
ter 2000 function evaluations for the two-objective
concealed weapons detection classifier.

Figure 29: Population of candidate solutions pre-
sented to the decision maker, for selection to be
made based on expert knowledge.

The plot in Figure 29 shows a number of optimised solutions. One of these solutions
must be selected, by the decision maker, to be applied in a concealed weapon detection
radar. The distribution of solutions in Figure 29 shows that each solution offers a distinctly
different true positive and false positive rate. This allows the decision maker to use these
solutions in a manner that will give control over the behaviour of the weapon detector. This
will enable the decision maker to choose a solution that increases the system’s sensitivity,
when there is a heightened threat to security. Equally the false alarm rate could be reduced
by choosing another solution.

The benchmark shown in Figure 29 was taken from [28], this solution offers a true
positive rate of 0.8 at a cost in false positive rate of 0.04. Given the requirement for false
alarm reduction which was identified as the primary objective earlier the solution from
Figure 29 that was chosen, by the decision maker, was the solution offering a true positive
rate of 0.82 and a false positive rate of 0.005. The chosen solution has provided a false
alarm reduction of 0.035 at the same time as increasing the true positive rate by 0.02. To
put this into perspective previously 40 people in one thousand would have been wrongly
accused of carrying a concealed weapon whereas the number of wrongly accused with the
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new optimised solution would be less than five in a thousand. Not only does this reduce
the inconvenience to the security forces and general public it builds confidence in the ability
and robustness of the weapons detection system.

4.3. Detection and classification of multiple types of threat

A weapon detection system that is capable of classifying a detected threat into target
groups would be an extremely valuable tool to security forces. Such a system would enable
the authorities to react to a detection in a controlled and proportional manner. The action
that must be taken to confront an individual concealing a threat object depends very much
on the threat object itself. An individual carrying a knife could be dealt with easier than
an individual with an improvised explosive device.

The extent of the ROI will be determined by the decision maker based on some pre-
determined criteria, for example the radar may be deployed in an environment where the
client has specified a minimum detection rate and maximum false alarm rate. It is possible
that no solutions may be found within a ROI which has been confined based on a clients
specifications, in which case the specification would be deemed beyond the performance of
the radar and another solution would be required.

As the number of targets of interest increases so does the risk of increasing the number
of conflicting objectives. The extent of which this method can handle conflicting objectives
will be explored in more detail in subsequent publications.

It should be noted that the radar beam is confined to a spot size which is commensurate
in size with the weapons of interest, therefore it is infeasible to measure more than one
weapon in a given location on the body. The authors suggest that the radar operator would
scan the radar beam over the person and would be able to find multiple weapons concealed
on different parts of the body and then address the situation based on the most severe threat
detected.

To investigate whether the developed radar based weapon detection system is capable of
classifying the reflected signal into target groups an experiment has been conducted. In this
experiment radar signals from a body without a concealed weapon, a body with a concealed
knife and a body with a concealed gun have been recorded by the radar. Again the radar
signals were recorded in the frequency domain with both amplitude and phase relative to
the illuminating beam measured. The amplitude and phase were used to generate an array
of complex numbers that were temporally resolved using an IFFT, the resulting signal was
then reduced using PCA as described earlier. This time the training set was constructed
of 300 sets of Eigenvalues correspond to the radar scans, 100 scans of each target scenario
were taken. That is 100 scans from body alone, 100 with a concealed knife and 100 with
a concealed gun. The validation set was constructed of the same number of scans and the
same distribution of targets. The scans used to construct the validation set had not been
seen by the ANN a priori. The architecture, in terms of the number of layers and number of
neurons on each layer, of the ANN was determined by the optimisation algorithm and the
weights and biases were also determined by the optimisation algorithm.

To assess the statistical significance of these results the area under the observed ROC
curve (as observed in [28]) was used alongside the chosen sample sizes to calculate the
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standard error.

θ1 = 0.8362

nA = 200

nN = 100

(25)

θ1 is the area under the curve for the observed ROC, nA is the number of scans with a
weapon and nN is the number of scans without a weapon. The standard error is calculated
as follows:

SE =

√
θ1(1− θ1) + (nA − 1)(Q1 − θ21) + (nN − 1)(Q2 − θ21)

nAnN
(26)

Where Q1 and Q2 are calculated using the following equations

Q1 =
θ1

2− θ1
(27)

Q2 =
2θ21

1 + θ1
(28)

The standard error was calculated to be 0.0225, this shows a high level of certainty that
the results are statistically significant. It can be shown through testing a null hypothesis
(that the results happened by chance) that the sample size chosen gives a high level of
confidence in the significance of these results. To do this the area under the curve is set at
0.5 this represents a special case of a ROC which is by chance and has no useful classification
abilities. The difference between the area under the observed ROC and the area under the
curve for the null hypothesis is divided by the standard error to give a z-score. A z-score of
1.645 relates to a 5% one-sided test of significance and a 95% power.

z =
θ1 − θ2
SE

(29)

θ2 = 0.5 (30)

The value of the z-score calculated for this test was 14.9, this shows that the sample
sizes chosen were much larger than required and thus result in a high level of statistical
significance.

4.3.1. Results

The population of solutions from the WZ-MOEA/D optimisation are plotted in Figure
30, this plot shows the solutions for a 5 objective problem. The 5 objectives are split into
true positives for the body, gun and knife and the false positives for the gun and knife. In
this problem the reduction of both false positive rates are the two main objectives, these
should be weighted equally. The remaining objectives are the maximization of the true
positive rates for each target included in the training and validation sets. Also presented is
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a colour-map, Figure 31, this was used to aid the decision maker in choosing a solution from
the population. In each of the presented plots there are 5 candidate solutions, one of which
should be chosen by the decision maker to be implemented in the weapon detection system.

Figure 30: Objective results for 5-objective threat
detection.

Figure 31: Colour-map used by decision maker.

The colour-map was found to be useful tool in the selection of a solution from the final
candidate population. When a population of 5 solutions was presented to the decision maker
in the minimisation format presented in Figure 30 it was difficult to visualise the different
trade-offs between candidate solutions. The visualisation of the trade-off between solutions
is much clearer in the colour-map in Figure 31. Figure 31 shows that all solutions provide
a means to reliably classify the signals into targets classes which are body, gun and knife;
where the true positive rates are high and the false positive rates are low for all target classes.
This can also be seen in the minimisation format presented in Figure 30. In Figure 31 it is
clear to see that there are subtle differences in the trade-offs between the 5 objectives in the
final candidate population. As the false positive rates for both target classes are effectively
equal for all candidate solutions, the solution taken by the decision maker was chosen as the
solution with near equal true positive rate for all targets. This solution is candidate solution
number 5.

5. Conclusions

In this paper a novel method of preference articulation has been introduced in the form
of the WZ preference articulation operator. The WZ preference articulation operator has
been incorporated into an implementation of MOEA/D and benchmarked on bi-objective
and five-objective test functions and compared to MOEA/D-DRA. The results show that
the WZ preference articulation operator has successfully improved the performance of its
host algorithm (MOEA/D) when searching towards an expressed ROI, by producing more
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solutions within the ROI, producing solutions in the ROI within fewer function evaluations,
and also producing populations of better hypervolume indicator quality.

The application of the WZ-MOEA/D optimisation algorithm to the training and opti-
misation of the topology of an ANN intended for use in Concealed Weapon Detection has
been presented. The performance of the optimised ANN has been benchmarked against
previously published data, in which an ANN had been trained using back-propagation and
its topology determined by trial and error. The optimisation has been shown to provide
the decision maker with a number of solutions (trained ANNs) that all have independent
trade-offs which are equally distributed across the Pareto front. The decision maker then
selected an optimised solution which provided a reduction in false alarm rate and an increase
in detection rate.

Although the results have shown that the weapons detection radar can achieve high
detection rates with very little cost in terms of false alarm rates it should be noted that
these values only apply in the scenario used to collect the data published within in this
paper. It is anticipated that the system performance will fall away and fewer detections
will be made in other scenarios, for example if the person being screened is non-co-operative
then the operator may be unable to make a full scan of the person and therefore a concealed
weapon may go undetected. The application of radar to weapon detection is novel and
therefore all operational procedures and system performance have not yet been evaluated,
this will be subject to further research.

There is an opportunity for further work in using the WZ preference articulation operator
in combination with an offline archive to explore the effects of changing preferences during
the optimisation process and using the offline archive to search for solutions matching the
new preferences, to identify whether this type of combination would speed up search in the
presence of shifting preferences, without the need for re-starts. There is also an opportunity
for further work with the development of a multi-objective test suite targeting the perfor-
mance assessment of the ability for an optimiser to incorporate decision maker preferences,
this would also provide a standard for future comparison and assessment of preference driven
optimisers.
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[9] J. Derrac, C. Cornelis, S. Garćıa, F. Herrera, Enhancing evolutionary instance selection algorithms by
means of fuzzy rough set based feature selection, Information Sciences 186 (1) (2012) 73–92.
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