16 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link

    Genetic relatedness between oral and intestinal isolates of Porphyromonas endodontalis by analysis of random amplified polymorphic DNA

    No full text
    Genomic fingerprints from the DNA of 27 strains of Porphyromonas endodontalis from diverse clinical acid geographic origins were generated as random amplified polymorphic DNA (RAPD) using the technique of PCR amplification with a single primer of arbitrary sequence. Cluster analysis of the combined RAPD data obtained with three selected 9- or 10-mer-long primers identified 25 distinct RAPD types which clustered as three main groups identifying three genogroups. Genogroups I and II included exclusively P. endodontalis isolates of oral origin, while 7/9 human intestinal strains of genogroup III which linked at a similarity level of 52% constituted the most homogeneous group in our study. Genotypic diversity within P. endodontalis, as shown by RAPD analysis, suggests that the taxon is composed of two oral genogroups and one intestinal genogroup. This hypothesis remains to be confirmed. (C) Elsevier, Paris.1501616

    Connexin 26 mutations and nonsyndromic hearing impairment in Northern Finland

    No full text
    Objective: The aims of the present study were to evaluate the role of the gap junction protein beta-2 gene (GJB2), encoding connexin 26 (Cx26), in children with moderate to profound prelingual nonsyndromic sensorineural hearing impairment (HI) and to investigate the carrier frequencies of the GJB2 gene mutations in a control population in Northern Finland. Methods: Mutation analysis was performed by direct sequencing and carrier detection by conformation sensitive gel electrophoresis further confirmed by direct sequencing. Results: Cx26 mutations were found in 15 of 71 (21.1%) (67 families) children with HI. Homozygosity for the mutation 35delG was shown to be the cause of HI in 13 of 15 (86.7%) children. Homozygosity for the M34T genotype was found in one child, and compound heterozygosity for the M34T/V37I genotype was found in another. Five families of those with suspected familial HI (29.4%) and six families out of those with sporadic HI (12.0%) had a homozygous or compound heterozygous mutation. The carrier frequency for the mutation 35delG was 1 of 78 (4 of 313) and that for the M34T was I of 26 (12 of 313). Conclusion: 35deIG/35deIG genotype was found to be a significant cause of moderate to profound prelingual. nonsyndromic sensorineural HI in Northern Finland. M34T/M34T genotype was seen in only one child, but the carrier frequency of the M34T allele was about three times higher than that of the 35delG mutation
    corecore