167 research outputs found

    A dust-parallax distance of 19 megaparsecs to the supermassive black hole in NGC 4151

    Full text link
    The active galaxy NGC 4151 has a crucial role as one of only two active galactic nuclei for which black hole mass measurements based on emission line reverberation mapping can be calibrated against other dynamical methods. Unfortunately, effective calibration requires an accurate distance to NGC 4151, which is currently not available. Recently reported distances range from 4 to 29 megaparsecs (Mpc). Strong peculiar motions make a redshift-based distance very uncertain, and the geometry of the galaxy and its nucleus prohibit accurate measurements using other techniques. Here we report a dust-parallax distance to NGC 4151 of DA=19.02.6+2.4D_A = 19.0^{+2.4}_{-2.6} Mpc. The measurement is based on an adaptation of a geometric method proposed previously using the emission line regions of active galaxies. Since this region is too small for current imaging capabilities, we use instead the ratio of the physical-to-angular sizes of the more extended hot dust emission as determined from time-delays and infrared interferometry. This new distance leads to an approximately 1.4-fold increase in the dynamical black hole mass, implying a corresponding correction to emission line reverberation masses of black holes if they are calibrated against the two objects with additional dynamical masses.Comment: Authors' version of a letter published in Nature (27 November 2014); 8 pages, 5 figures, 1 tabl

    The quality control theory of aging

    Get PDF
    The quality control (QC) theory of aging is based on the concept that aging is the result of a reduction in QC of cellular systems designed to maintain lifelong homeostasis. Four QC systems associated with aging are 1) inadequate protein processing in a distressed endoplasmic reticulum (ER); 2) histone deacetylase (HDAC) processing of genomic histones and gene silencing; 3) suppressed AMPK nutrient sensing with inefficient energy utilization and excessive fat accumulation; and 4) beta-adrenergic receptor (BAR) signaling and environmental and emotional stress. Reprogramming these systems to maintain efficiency and prevent aging would be a rational strategy for increased lifespan and improved health. The QC theory can be tested with a pharmacological approach using three well-known and safe, FDA-approved drugs: 1) phenyl butyric acid, a chemical chaperone that enhances ER function and is also an HDAC inhibitor, 2) metformin, which activates AMPK and is used to treat type 2 diabetes, and 3) propranolol, a beta blocker which inhibits BAR signaling and is used to treat hypertension and anxiety. A critical aspect of the QC theory, then, is that aging is associated with multiple cellular systems that can be targeted with drug combinations more effectively than with single drugs. But more importantly, these drug combinations will effectively prevent, delay, or reverse chronic diseases of aging that impose such a tremendous health burden on our society

    Black Hole Mass Estimates Based on CIV are Consistent with Those Based on the Balmer Lines

    Full text link
    Using a sample of high-redshift lensed quasars from the CASTLES project with observed-frame ultraviolet or optical and near-infrared spectra, we have searched for possible biases between supermassive black hole (BH) mass estimates based on the CIV, Halpha and Hbeta broad emission lines. Our sample is based upon that of Greene, Peng & Ludwig, expanded with new near-IR spectroscopic observations, consistently analyzed high S/N optical spectra, and consistent continuum luminosity estimates at 5100A. We find that BH mass estimates based on the FWHM of CIV show a systematic offset with respect to those obtained from the line dispersion, sigma_l, of the same emission line, but not with those obtained from the FWHM of Halpha and Hbeta. The magnitude of the offset depends on the treatment of the HeII and FeII emission blended with CIV, but there is little scatter for any fixed measurement prescription. While we otherwise find no systematic offsets between CIV and Balmer line mass estimates, we do find that the residuals between them are strongly correlated with the ratio of the UV and optical continuum luminosities. Removing this dependency reduces the scatter between the UV- and optical-based BH mass estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The dispersion is smallest when comparing the CIV sigma_l mass estimate, after removing the offset from the FWHM estimates, and either Balmer line mass estimate. The correlation with the continuum slope is likely due to a combination of reddening, host contamination and object-dependent SED shapes. When we add additional heterogeneous measurements from the literature, the results are unchanged.Comment: Accepted for publication in The Astrophysical Journal. 37 text pages + 8 tables + 23 figures. Updated with comments by the referee and with a expanded discussion on literature data including new observation

    Effect of hyperbaric stress on yeast morphology: Study by automated image analysis

    Get PDF
    The effects of hyperbaric stress on the morphology of Saccharomyces cerevisiae were studied in batch cultures under pressures between 0.1 MPa and 0.6 MPa and different gas compositions (air, oxygen, nitrogen or carbon dioxide), covering aerobic and anaerobic conditions. A method using automatic image analysis for classification of S. cerevisiae cells based on their morphology was developed and applied to experimental data. Information on cell size distribution and bud formation throughout the cell cycle is reported. The results show that the effect of pressure on cell activity strongly depends on the nature of the gas used for pressurization. While nitrogen and air to a maximum of 0.6 MPa of pressure were innocuous to yeast, oxygen and carbon dioxide pressure caused cell inactivation, which was confirmed by the reduction of bud cells with time. Moreover, a decrease in the average cell size was found for cells exposed for 7.5 h to 0.6 MPa CO2.CAPES and CNPq (Brazil). Fundação para a Ciência e Tecnologia (Portugal)

    Yarrowia lipolytica growth under increased air pressure: influence on enzymes production

    Get PDF
    Improvement of microbial cell cultures oxygenation can be achieved by the increase of total air pressure, which increases oxygen solubility in the medium. In this work, a pressurized bioreactor was used for Yarrowia lipolytica batch cultivation under increased air pressure from 1 to 6 bar. Cell growth was strongly enhanced by the pressure rise. Fivefold and 3.4-fold increases in the biomass production and in specific growth rate, respectively, were observed under 6 bar. The increase of oxygen availability caused the induction of the antioxidant enzyme superoxide dismutase, which indicates that the defensive mechanisms of the cells against oxidative stress were effective and cells could cope with increased pressure. The pregrowth of Y. lipolytica under increased pressure conditions did not affect the lipase production ability of the cells. Moreover, the extracellular lipase activity increased 96% using a 5-bar air pressure instead of air at 1- bar pressure during the enzyme production phase. Thus, air pressure increase in bioreactors is an effective mean of cell mass and enzyme productivity enhancement in bioprocess based in Y. lipolytica cultures

    Effects of maternal modafinil treatment on fetal development and neonatal growth parameters — a multicenter case series of the European Network of Teratology Information Services (ENITS)

    Get PDF
    \ua9 2023 The Authors. Acta Psychiatrica Scandinavica published by John Wiley & Sons Ltd.Objective: In recent years, safety concerns about modafinil exposure during pregnancy have emerged. In particular, increased risks for major congenital anomalies (MCA) and impaired fetal growth were reported, although study results were conflicting. Our investigation aims to examine previously reported safety signals. Method: Multicenter case series based on data from 18 Teratology Information Services from 12 countries. Modafinil exposed pregnancies with an estimated date of birth before August 2019 were included in this study. For prospectively ascertained pregnancies, cumulative incidences of pregnancy outcomes, rate of nonchromosomal MCA in first trimester exposed pregnancies and percentiles of neonatal/infant weight and head circumference (HC) were calculated. Potential dose-dependent effects on fetal growth were explored by linear regression models. Retrospectively ascertained cases were screened for pattern of MCA and other adverse events. Results: One hundred and seventy-five prospectively ascertained cases were included, of which 173 were exposed at least during the first trimester. Cumulative incidences for live birth, spontaneous abortion and elective termination of pregnancy were 76.9% (95% CI, 68.0%–84.8%), 9.3% (95% CI, 5.0%–16.9%), and 13.9% (95% CI, 8.1%–23.1%), respectively. Nonchromosomal MCA was present in 3/150 live births, corresponding to an MCA rate of 2.0% (95%CI, 0.6%–6.1%), none were reported in pregnancy losses. Compared to reference standards, birth weight (BW) tended to be lower and neonatal HC to be smaller in exposed newborns (data available for 144 and 73 of 153 live births, respectively). In nonadjusted linear regression models, each 100 mg increase of average dosage per pregnancy day was associated with a decrease in standard deviation score (SDS) of −0.28 SDS (95% CI, −0.45 to −0.10) for BW and of −0.28 SDS (95% CI, −0.56 to 0.01) for HC. Screening of 22 retrospectively reported cases did not reveal any specific pattern of MCA or other adverse outcomes. Conclusion: The results do not indicate an increased risk of MCA after in utero exposure to modafinil, but a tendency toward lower BW and reduced neonatal HC. However, these findings should be regarded as preliminary. Until further studies allow for a definite conclusion, modafinil should not be used during pregnancy

    Batch and fed-batch growth of Pichia pastoris under increased air pressure

    Get PDF
    Pichia pastoris CBS 2612 behavior under air pressures of 1 bar, 3 bar and 5 bar in culture media of glycerol (pure and crude) and methanol was studied. Generally, the increase in oxygen transfer rate due to the increase of total pressure improved cellular growth for all carbon sources and for batch and fed-batch processes with different feeding rate strategies. In batch cultures, 1.4-fold, 1.2-fold, and 1.5-fold improvement in biomass production was obtained with the increase of air pressure up to 5 bar, using methanol, pure glycerol, and crude glycerol, respectively. The raise of air pressure to 5 bar using exponential feeding rate leaded to 1.4-fold improvement in biomass yield per glycerol mass consumed, for crude and pure glycerol. The current low cost of crude glycerol from the biodiesel production together with the present results shows the possibility of improving cell mass production of P. pastoris using increased air pressure.The authors acknowledge the financial support provided by "Fundacao para a Ciencia e Tecnologia" (Grant SFRH/BD/47371/2008)

    Applications of yeast flocculation in biotechnological processes

    Get PDF
    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer’s yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous β-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.Fundação para a Ciência e a Tecnologia (FCT) – PRAXIS XXI - BD11306/97

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore