144 research outputs found
Molybdenum(VI) Oxosulfato Complexes in MoO<sub>3</sub>–K<sub>2</sub>S<sub>2</sub>O<sub>7</sub>–K<sub>2</sub>SO<sub>4</sub> Molten Mixtures: Stoichiometry, Vibrational Properties, and Molecular Structures
Molecular structure and reactivity of titania-supported transition metal oxide catalysts synthesized by equilibrium deposition filtration for the oxidative dehydrogenation of ethane
Recent advances in hydrothermal carbonisation:from tailored carbon materials and biochemicals to applications and bioenergy
Introduced in the literature in 1913 by Bergius, who at the time was studying biomass coalification, hydrothermal carbonisation, as many other technologies based on renewables, was forgotten during the "industrial revolution". It was rediscovered back in 2005, on the one hand, to follow the trend set by Bergius of biomass to coal conversion for decentralised energy generation, and on the other hand as a novel green method to prepare advanced carbon materials and chemicals from biomass in water, at mild temperature, for energy storage and conversion and environmental protection. In this review, we will present an overview on the latest trends in hydrothermal carbonisation including biomass to bioenergy conversion, upgrading of hydrothermal carbons to fuels over heterogeneous catalysts, advanced carbon materials and their applications in batteries, electrocatalysis and heterogeneous catalysis and finally an analysis of the chemicals in the liquid phase as well as a new family of fluorescent nanomaterials formed at the interface between the liquid and solid phases, known as hydrothermal carbon nanodots
Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review
Catalytic hydrodeoxygenation (HDO) is a fundamental process for bio‐resources upgrading to produce transportation fuels or added value chemicals. The bottleneck of this technology to be implemented at commercial scale is its dependence on high pressure hydrogen, an expensive resource which utilization also poses safety concerns. In this scenario, the development of hydrogen‐free alternatives to facilitate oxygen removal in biomass derived compounds is a major challenge for catalysis science but at the same time it could revolutionize biomass processing technologies. In this review we have analysed several novel approaches, including catalytic transfer hydrogenation (CTH), combined reforming and hydrodeoxygenation, metal hydrolysis and subsequent hydrodeoxygenation along with non‐thermal plasma (NTP) to avoid the supply of external H2. The knowledge accumulated from traditional HDO sets the grounds for catalysts and processes development among the hydrogen alternatives. In this sense, mechanistic aspects for HDO and the proposed alternatives are carefully analysed in this work. Biomass model compounds are selected aiming to provide an in‐depth description of the different processes and stablish solid correlations catalysts composition‐catalytic performance which can be further extrapolated to more complex biomass feedstocks. Moreover, the current challenges and research trends of novel hydrodeoxygenation strategies are also presented aiming to spark inspiration among the broad community of scientists working towards a low carbon society where bio‐resources will play a major role.Financial support for this work was provided by the Department of Chemical and Process Engineering of the University of Surrey and the EPSRC grants EP/J020184/2 and EP/R512904/1 as well as the Royal Society Research Grant RSGR1180353. Authors would also like to acknowledge the Ministerio de Economía, Industriay Competitividad of Spain (Project MAT2013‐45008‐P) and the Chinese Scholarship Council (CSC). LPP also thanks Comunitat Valenciana for her postdoctoral fellow (APOSTD2017)
An operando Raman study of molecular structure and reactivity of molybdenum(vi) oxide supported on anatase for the oxidative dehydrogenation of ethane
Structural and vibrational properties of molybdena catalysts supported on alumina and zirconia studied by in situ Raman and FTIR spectroscopies combined with 18O/16O isotopic substitution
Acidity-activity relationships in the solvent-free tert-butylation of phenol over sulfated metal oxides
Structure-activity relationships of catalytic systems supported on oxide carriers
The present work focuses on the study of structural and catalytic properties of the dispersed phase of supported MoO3 catalysts. In situ Raman spectroscopy has been used to characterize the supported catalysts and provide fundamental information about the configuration and the molecular structure under various controlled gas atmospheres and operating temperatures. A strategy involving the combined use of in situ Raman and in situ FTIR vibrational spectroscopies and the combined use of in situ Raman spectroscopy and 18O2/16O2 isotopic exchange experiments has been applied to investigate the molecular structure of the molybdena dispersed phase. A series of supported molybdenum oxide catalysts supported on TiO2(anatase) has been extensively examined by means of in situ and operando Raman spectroscopy under oxidizing, reducing and ODH of ethane conditions. The molecular structure of the surface MoOx species has been assigned to the formation of isolated units, primarily as O=Mo(–O–Ti)3 with a characteristic Mo=O sretching frequency observed at 994 cm-1 both at low as well as at high coverage below monolayer (~6 Mo/nm2). A weak and broad band at ~925 cm-1 due to Mo–O– Mo functionalities becomes visible with increasing loading, indicating a low presence of associated (polymeric) molybdates with increasing loading on TiO2. When exceeding monolayer coverage, the Raman spectra revealed the formation of bulk crystalline MoO3 on the TiO2 support. Detailed catalytic studies of the supported molybdena catalysts on titania showed that the monolayer catalyst (15MoTi) provide better catalytic results. Additionally, the structural and catalytic properties of monolayer MoO3 catalysts supported on ZrO2, Al2O3, TiO2 and SiO2 were studied for the oxidative dehydrogenation (ODH) of ethane by in situ and operando Raman spectroscopy. The molecular structure of the dispersed surface species evolves from isolated monomolybdates (MoO4 and MoO5) to associated (MoOx)n units in polymolybdate chains, depending on the support. The nature of the oxide support material and of the Mo–O–support bond has a significant influence on the catalytic behavior of the molybdena catalysts with monolayer coverage while, the dependence of reactivity on the support follows the order ZrO2 > Al2O3 > TiO2 > SiO2. The vibrational properties of molybdena catalysts supported on titania, zirconia and alumina were studied by means of in situ vibrational (Raman and FTIR) spectroscopies and 18O/16O isotopic exchange experiments combined with in situ Raman spectra at 450 °C. The aim of this work was the discrimination between mono-oxo and di-oxo configuration for the deposited molybdena phase at low as well as at high coverage near monolayer. The vibrational isotope effects and the combined interpretation of the observed Raman fundamental, IR overtone, as well as calculated zero-order band wavenumbers and characteristics suggest a mono-oxo configuration for the deposited molybdena phase at low as well as at higher coverage, irrespective of the extent of association (polymerization). A “nextnearest- neighbor 18O/16O substitution” vibrational effect is observed, resulting in small red shifts (2–7 cm?1) of the Mo=16O Raman band wavenumber. This effect is found to be strongly related to the nature of the support, regarding the extent of the shift, and assigned to the different reducibilities of the various support materials.Αντικείμενο της παρούσας διατριβής ήταν η μελέτη των δομικών και καταλυτικών ιδιοτήτων καταλυτών ΜοΟ3 υποστηριγμένων σε οξειδικούς φορείς. Η χρήση της φασματοσκοπικής μεθόδου Raman υπό ελεγχόμενες in situ συνθήκες επέτρεψε το χαρακτηρισμό των καταλυτών κάτω από ένα εύρος συνθηκών που μελετήθηκαν. Η εφαρμογή της μεθοδολογίας Operando Raman-GC οδήγησε σε συμπεράσματα αναφορικά με δομικές αλλαγές και δεδομένα καταλυτικής αποτελεσματικότητας ενώ συνδυασμός των δονητικών φασματοσκοπιών Raman και FTIR με πειράματα ισοτοπικής εναλλαγής 18Ο/16Ο χρησιμοποιήθηκε για εκτενέστερη διερεύνηση της μοριακής δομής των καταλυτών. Ειδικότερα εξετάσθηκε μια σειρά καταλυτών ΜοΟ3/ΤiO2 με in situ φασματοσκοπία Raman κάτω από οξειδωτικές και αναγωγικές συνθήκες, καθώς επίσης και κάτω από συνθήκες αντίδρασης οξειδωτικής αφυδρογόνωσης του αιθανίου. Η μοριακή δομή των επιφανειακών ειδών μολυβδενίου βρέθηκε να σχετίζεται άμεσα με το σχηματισμό κυρίως απομονωμένων ειδών Μο, για χαμηλές και υψηλές φορτίσεις κοντά στη μονοστρωματική κάλυψη, ενώ για φορτίσεις που υπερβαίνουν το μονόστρωμα παρατηρήθηκε ο σχηματισμός κρυσταλλικού ΜοΟ3. Η αποτίμηση της καταλυτικής ενεργότητας κατέδειξε πως καταλύτες με πολύ καλή διασπορά του ΜοΟ3 πάνω στην επιφάνεια παρουσιάζουν τα βέλτιστα αποτελέσματα. Επιπροσθέτως, εξετάζεται η επίδραση του φορέα (ZrO2, Al2O3, TiO2 και SiO2) στη δομή και στην καταλυτική συμπεριφορά μονοστρωματικών υποστηριγμένων καταλυτών MoO3 για την αντίδραση της οξειδωτικής αφυδρογόνωσης του αιθανίου με την φασματοσκοπία Raman. Μελετήθηκε η επίδραση της φόρτισης, της θερμοκρασίας, της σύστασης της αέριας τροφοδοσίας και του χρόνου παραμονής των αντιδρώντων πάνω στα χαρακτηριστικά των φασμάτων Raman καθώς και στην καταλυτική ενεργότητα με στόχο την εξαγωγή σχέσεων δομής-ενεργότητας/εκλεκτικότητας υποστηριγμένων καταλυτών MoO3/MxOy (M=Zr, Al, Ti, Si) για την οξειδωτική αφυδρογόνωση του αιθανίου. Η επιλογή της φύσης του φορέα/υποστρώματος κρίθηκε ως σημαντικός παράγοντας που ελέγχει την αποτελεσματικότητα της λειτουργίας των καταλυτών για την ODH του αιθανίου. Τέλος, οι δονητικές φασματοσκοπίες Raman και FTIR κάτω από ελεγχόμενες in situ συνθήκες χρησιμοποιήθηκαν για τη διερεύνηση της μοριακής δομής των καταλυτικών συστημάτων MoO3/ZrO2, MoO3/Al2O3 και MoO3/TiO2. Η φασματοσκοπία Raman σε συνδυασμό με πειράματα ισοτοπικής εναλλαγής 18Ο/16Ο οδήγησε σε αξιόλογα συμπεράσματα αναφορικά με τη μοριακή δομή των διεσπαρμένων μολυβδενικών ειδών υπό το πρίσμα της διάκρισης μεταξύ mono-oxo και di-oxo δομών. Τα αποτελέσματα συνέκλιναν στην παρουσία mono-oxo μοριακών διαμορφώσεων για κάθε καταλυτικό σύστημα (MoO3/ZrO2, MoO3/Al2O3 και MoO3/TiO2), τόσο για χαμηλές όσο και για φορτίσεις κοντά στο μονόστρωμα. Η υποκατάσταση γειτονικών οξειδικών θέσεων των Μο=16Ο δεσμών βρέθηκε να συμβάλει στη σταδιακή μετατόπιση της κορυφής αυτών των δεσμών σε χαμηλότερες συχνότητες μέσω ενός φαινομένου που ονομάστηκε “δονητικό ισοτοπικό φαινόμενο υποκατάστασης 18Ο/16Ο επόμενων κοντινότερων γειτόνων” (Next – Nearest – Neighbor 18Ο/16Ο substitution vibrational isotope effect)
Catalytic performance and stability of Fe-doped CeO<sub>2</sub> in propane oxidative dehydrogenation using carbon dioxide as an oxidant
Propane oxidative dehydrogenation (ODH) in the presence of CO2 was investigated over a series of Fe-doped CeO2 catalysts.</p
On the configuration, molecular structure and vibrational properties of MoOx sites on alumina, zirconia, titania and silica
- …
