1,621 research outputs found

    Occurrence, morphology and growth of understory saplings in Swedish forests

    Get PDF
    Growing demands for a multipurpose forestry leads to increased use of silvicultural systems that avoid clear-cutting. Regeneration in such systems is based on establishment and ingrowth of new seedlings under a more or less closed canopy. At long-term forestry planning reliable ingrowth models are needed to predict the future wood production. The objectives of this thesis were to review the field of ingrowth in established stands, to develop a model for prediction of ingrowth for the planning system Heureka and to deepen the insight in the ingrowth process by a case study. The ingrowth model consisted of four parts, describing: Probability for occurrence of saplings (1-39 mm diameter at breast height (DBH)) on plots with r = 5 m. Number of saplings on stocked plots (plots with saplings of target species). Probability for ingrowth of a sapling over 39 mm DBH during a 5-year period. Diameter of ingrown trees at the end of the 5-year period. The model was based on data from permanent plots at the National Forest Inventory. Separate functions were developed for seven species and species groups. Picea abies saplings had the widest distribution and occurred on 58 % of 12 469 representative plots in established forests. Betula spp. saplings occurred on 50 % of the plots, while the occurrence of saplings of other species was less than 20 %. Sapling density on stocked plots was highest for Betula spp, in average 10 per plot. Average ingrowth rate was 14.6 stems per ha and year, and P. abies made up more than half of this. The ingrowth varied according to the different functions with age, density and species composition of the stand and the moisture and fertility of the site. Growth and morphology of young conifers was examined in a species experiment on a clearcut and in shelterwoods of three different densities (41 – 124 stems per hectare). The largest intra-specific differences between clearcut and shelterwood were found for Pinus spp, while moderate differences were found for Picea spp. For Pinus spp, stem height and diameter decreased, while the stem slenderness increased with increasing shelterwood density. Moreover, the number of branches per whorl and the crown ratio decreased with increasing shelterwood density. The proportion of biomass in roots, stem, branches and needles was analysed as a function of estimated irradiance transmission for each individual. The proportion of stem decreased and the proportion of branches increased with increasing irradiance for Pinus spp. No significant trends were found for Picea spp

    Digital Tools in Primary School Art – What Difference Does it Make?

    Get PDF

    Magnetic order and frustrated dynamics in Li(Ni0.8Co0.1Mn0.1)O2: a study by {\mu}+SR and SQUID magnetometry

    Get PDF
    Recently, the mixed transition metal oxides of the form Li(Ni1-y-zCoyMnz)O2, have become the center of attention as promising candidates for novel battery material. These materials have also revealed very interesting magnetic properties due to the alternate stacking of planes of metal oxides on a 2D triangular lattice and the Li-layers. The title compound, Li(Ni0.8Co0.1Mn0.1)O2, has been investigated by both magnetometry and measurements and {\mu}+SR. We find the evolution of localized magnetic moments with decreasing temperature below 70 K. The magnetic ground state (T = 2 K) is, however, shown to be a frustrated system in 3D, followed by a transition into a possible 2D spinglass above 22 K. With further increasing temperature the compound show the presence of remaining correlations with increasing effective dimensionality all the way up to the ferrimagnetic transition at TC = 70 K.Comment: Accepted for publication in Physics Procedia (muSR2011 Conference

    Quantitative characterization of pore structure of several biochars with 3D imaging

    Full text link
    Pore space characteristics of biochars may vary depending on the used raw material and processing technology. Pore structure has significant effects on the water retention properties of biochar amended soils. In this work, several biochars were characterized with three-dimensional imaging and image analysis. X-ray computed microtomography was used to image biochars at resolution of 1.14 Ό\mum and the obtained images were analysed for porosity, pore-size distribution, specific surface area and structural anisotropy. In addition, random walk simulations were used to relate structural anisotropy to diffusive transport. Image analysis showed that considerable part of the biochar volume consist of pores in size range relevant to hydrological processes and storage of plant available water. Porosity and pore-size distribution were found to depend on the biochar type and the structural anisotopy analysis showed that used raw material considerably affects the pore characteristics at micrometre scale. Therefore attention should be paid to raw material selection and quality in applications requiring optimized pore structure.Comment: 16 pages, 4 figures. The final publication is available at Springer via http://dx.doi.org/10.1007/s11356-017-8823-

    Design Configuration with Architectural Objects

    Get PDF
    The paper presents the intermediate results of an ongoing research project with the aim to develop concepts and tools for architectural design in industrialized house-building. Architectural design aims to enable different “situations” in the built environment involving people, behaviour, experience and environment, with desired technical, functional and aesthetic properties. "Situations” may be represented by configurable modular “architectural objects” that also reflect the variability of an industrialized building system. In three case studies the relevance of the concept of architectural object is investigated; in architectural design, and through modularization, development and organization of technical platforms. The results however also show a need for further research concerning the implementation in a BIM environment

    Dispersal in male ursine colobus monkeys (Colobus vellerosus): Influence of age, rank and contact with other groups on dispersal decisions

    Get PDF
    Dispersal is male-biased in ursine colobus monkeys (Colobus vellerosus), although female dispersal also occurs (Teichroeb et al., 2009). Here we describe the process of male dispersal and its connection with between-group encounters (BGEs, N = 444) and male incursions (when males left their group and approached within 50 m of another group; N = 128) at the Boabeng-Fiema Monkey Sanctuary in central Ghana. Through BGEs and incursions, particularly those with non-aggressive interactions between individuals in different groups (BGEs, N = 17; incursions, N = 4), males could probably assess other groups for dispersal opportunities. There was a trend for males to perform incursions more frequently before emigrating voluntarily than involuntarily. Incursions were often performed towards the group that the male eventually transferred to. Incursions by alpha males were temporally shorter and more aggressive than those by non-alpha males. We suggest that non-alpha males used incursions to assess other groups for breeding or dispersal opportunities, whereas alpha males performed incursions mainly to convey information about their quality to neighbouring males and females. Male emigrations/disappearances (natal N = 20, secondary N = 43, unknown N = 9) and immigrations (N = 62) were recorded for seven groups during ten years (2000- 2010). Alpha males always emigrated involuntarily. Parallel emigration and immigration occurred. Males often immigrated into groups with a more favourable adult male/adult female ratio and improved their rank, both of which likely increased their mating opportunities. The most fitting ultimate explanation for both natal and secondary male dispersal in this population was the intrasexual competition for mates hypothesis, as males of all ages appeared to emigrate to improve their reproductive opportunities. © 2011 Koninklijke Brill NV, Leiden

    The Pfaffian quantum Hall state made simple--multiple vacua and domain walls on a thin torus

    Full text link
    We analyze the Moore-Read Pfaffian state on a thin torus. The known six-fold degeneracy is realized by two inequivalent crystalline states with a four- and two-fold degeneracy respectively. The fundamental quasihole and quasiparticle excitations are domain walls between these vacua, and simple counting arguments give a Hilbert space of dimension 2n−12^{n-1} for 2n−k2n-k holes and kk particles at fixed positions and assign each a charge ±e/4\pm e/4. This generalizes the known properties of the hole excitations in the Pfaffian state as deduced using conformal field theory techniques. Numerical calculations using a model hamiltonian and a small number of particles supports the presence of a stable phase with degenerate vacua and quarter charged domain walls also away from the thin torus limit. A spin chain hamiltonian encodes the degenerate vacua and the various domain walls.Comment: 4 pages, 1 figure. Published, minor change
    • 

    corecore