1,861 research outputs found
Evolution in the Cluster Early-type Galaxy Size-Surface Brightness Relation at z =~ 1
We investigate the evolution in the distribution of surface brightness, as a
function of size, for elliptical and S0 galaxies in the two clusters RDCS
J1252.9-2927, z=1.237 and RX J0152.7-1357, z=0.837. We use multi-color imaging
with the Advanced Camera for Surveys on the Hubble Space Telescope to determine
these sizes and surface brightnesses. Using three different estimates of the
surface brightnesses, we find that we reliably estimate the surface brightness
for the galaxies in our sample with a scatter of < 0.2 mag and with systematic
shifts of \lesssim 0.05 mag. We construct samples of galaxies with early-type
morphologies in both clusters. For each cluster, we use a magnitude limit in a
band which closely corresponds to the rest-frame B, to magnitude limit of M_B =
-18.8 at z=0, and select only those galaxies within the color-magnitude
sequence of the cluster or by using our spectroscopic redshifts. We measure
evolution in the rest-frame B surface brightness, and find -1.41 \+/- 0.14 mag
from the Coma cluster of galaxies for RDCS J1252.9-2927 and -0.90 \+/- 0.12 mag
of evolution for RX J0152.7-1357, or an average evolution of (-1.13 \+/- 0.15)
z mag. Our statistical errors are dominated by the observed scatter in the
size-surface brightness relation, sigma = 0.42 \+/- 0.05 mag for RX
J0152.7-1357 and sigma = 0.76 \+/- 0.10 mag for RDCS J1252.9-2927. We find no
statistically significant evolution in this scatter, though an increase in the
scatter could be expected. Overall, the pace of luminosity evolution we measure
agrees with that of the Fundamental Plane of early-type galaxies, implying that
the majority of massive early-type galaxies observed at z =~ 1 formed at high
redshifts.Comment: Accepted in ApJ, 16 pages in emulateapj format with 15 eps figures, 6
in colo
Cauchy-Schwarz Regularized Autoencoder
Recent work in unsupervised learning has focused on efficient inference and learning in latent variables models. Training these models by maximizing the evidence (marginal likelihood) is typically intractable. Thus, a common approximation is to maximize the Evidence Lower BOund (ELBO) instead. Variational autoencoders (VAE) are a powerful and widely-used class of generative models that optimize the ELBO efficiently for large datasets. However, the VAE's default Gaussian choice for the prior imposes a strong constraint on its ability to represent the true posterior, thereby degrading overall performance. A Gaussian mixture model (GMM) would be a richer prior but cannot be handled efficiently within the VAE framework because of the intractability of the Kullback{Leibler divergence for GMMs. We deviate from the common VAE framework in favor of one with an analytical solution for Gaussian mixture prior. To perform efficient inference for GMM priors, we introduce a new constrained objective based on the Cauchy{Schwarz divergence, which can be computed analytically for GMMs. This new objective allows us to incorporate richer, multi-modal priors into the autoencoding framework. We provide empirical studies on a range of datasets and show that our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis
Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor
The electric field induced quantum phase transition from topological to
conventional insulator has been proposed as the basis of a topological field
effect transistor [1-4]. In this scheme an electric field can switch 'on' the
ballistic flow of charge and spin along dissipationless edges of the
two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a
conventional insulator with no conductive channels. Such as topological
transistor is promising for low-energy logic circuits [4], which would
necessitate electric field-switched materials with conventional and topological
bandgaps much greater than room temperature, significantly greater than
proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems
in which to look for topological field-effect switching, as they lie at the
boundary between conventional and topological phases [3,10-16]. Here we use
scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved
photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS
Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the
absence of electric field. Upon application of electric field by doping with
potassium or by close approach of the STM tip, the bandgap can be completely
closed then re-opened with conventional gap greater than 100 meV. The large
bandgaps in both the conventional and quantum spin Hall phases, much greater
than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin
Na3Bi is suitable for room temperature topological transistor operation
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice
Nuclear pore complexes (NPCs) facilitate all nucleocytoplasmic transport. These massive protein assemblies are modular, with a stable structural scaffold supporting more dynamically attached components. The scaffold is made from multiple copies of the heptameric Y complex and the heteromeric Nic96 complex. We previously showed that members of these core subcomplexes specifically share an ACE1 fold with Sec31 of the COPII vesicle coat, and we proposed a lattice model for the NPC based on this commonality. Here we present the crystal structure of the heterotrimeric 134-kDa complex of Nup84–Nup145C–Sec13 of the Y complex. The heterotypic ACE1 interaction of Nup84 and Nup145C is analogous to the homotypic ACE1 interaction of Sec31 that forms COPII lattice edge elements and is inconsistent with the alternative 'fence-like' NPC model. We construct a molecular model of the Y complex and compare the architectural principles of COPII and NPC lattices.National Institutes of Health (U.S.) (Grant GM77537)Pew Charitable Trusts (Scholar Award
Use of electrospinning to develop antimicrobial biodegradable multilayer systems: encapsulation of cinnamaldehyde and their physicochemical characterization
In this work, three active bio-based multilayer structures, using a polyhydroxybutyrate-co-valerate film with a valerate content of 8 % (PHBV8) as support, were developed. To this end, a zein interlayer with or without cinnamaldehyde (CNMA) was directly electrospun onto one side of the PHBV8 film and the following systems were developed: (1) without an outer layer; (2) using a PHBV8 film as outer layer; and (3) using an alginate-based film as outer layer. These multilayer structures were characterized in terms of water vapour and oxygen permeabilities, transparency, intermolecular arrangement and thermal properties. The antimicrobial activity of the active bio-based multilayer systems and the release of CNMA in a food simulant were also evaluated. Results showed that the presence of different outer layers reduced the transport properties and transparency of the multilayer films. The active bio-based multilayer systems showed antibacterial activity against Listeria monocytogenes being the multilayer structure prepared with CNMA and PHBV outer layers (PHBV + zein/CNMA + PHBV) the one that showed the greater antibacterial activity. The release of CNMA depended on the multilayer structures, where both Fick's and Case II transport-polymer relaxation explained the release of CNMA from the multilayer systems.Acknowledgments: Miguel A. Cerqueira (SFRH/BPD/72753/2010) andAnaI.Bourbon(SFRH/BD/73178/2010)arerecipientofafellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). J.L. Castro-Mayorga is supported by the Administrative Department of Science, Technology and Innovation (Colciencias) of Colombian Government. M. J. Fabra is a recipient of a Ramon y Cajal contract (RyC-2014-158) from the Spanish Ministry of Economy and Competitiveness. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and of the Project RECI/BBB-EBI/ 0179/2012 (FCOMP-01-0124-FEDER-027462). The support of EU Cost Action MP1206 is gratefully acknowledged
- …
