488 research outputs found

    Correlating Water Quality and Profile Data in the Florida Keys using Machine Learning Methods

    Get PDF
    Water quality is a very active subject of research in the water science field, where its importance includes maintaining the environment, managing wastewater, and securing fresh water. However, the increase of human development has led to problems that are affecting the ecosystem. Motivated by these problems, this research aims to find a solution for understanding the coastal water of the Florida Keys. The research used machine learning methods to find a correlation between water quality dataset and profile measurements dataset. To achieve this objective, the research first went through cleaning, rescuing, and structuring a readable dataset of the profile measurements that could be used in the analysis. Once the profile measurements dataset was completed, the next step was to find the correlation. To get a correlation between two datasets, the research proposed the use of regression coefficients coming from four different measurements in the profile dataset. Then, the coefficients were clustered using k-means and an independency test was carried out on the two datasets. Lastly, the research also built a water drone in the form of an airboat, which can collect data and can be controlled through an android app

    Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication

    Get PDF
    [EN] Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.European funds (European Regional Development Fund, ERDF); Spanish Ministerio de Economı´a y Competitividad; Junta de Andalucí

    Prognostic implications of comorbidity patterns in critically ill COVID-19 patients: A multicenter, observational study

    Get PDF
    Background The clinical heterogeneity of COVID-19 suggests the existence of different phenotypes with prognostic implications. We aimed to analyze comorbidity patterns in critically ill COVID-19 patients and assess their impact on in-hospital outcomes, response to treatment and sequelae. Methods Multicenter prospective/retrospective observational study in intensive care units of 55 Spanish hospitals. 5866 PCR-confirmed COVID-19 patients had comorbidities recorded at hospital admission; clinical and biological parameters, in-hospital procedures and complications throughout the stay; and, clinical complications, persistent symptoms and sequelae at 3 and 6 months. Findings Latent class analysis identified 3 phenotypes using training and test subcohorts: low-morbidity (n=3385; 58%), younger and with few comorbidities; high-morbidity (n=2074; 35%), with high comorbid burden; and renal-morbidity (n=407; 7%), with chronic kidney disease (CKD), high comorbidity burden and the worst oxygenation profile. Renal-morbidity and high-morbidity had more in-hospital complications and higher mortality risk than low-morbidity (adjusted HR (95% CI): 1.57 (1.34-1.84) and 1.16 (1.05-1.28), respectively). Corticosteroids, but not tocilizumab, were associated with lower mortality risk (HR (95% CI) 0.76 (0.63-0.93)), especially in renal-morbidity and high-morbidity. Renal-morbidity and high-morbidity showed the worst lung function throughout the follow-up, with renal-morbidity having the highest risk of infectious complications (6%), emergency visits (29%) or hospital readmissions (14%) at 6 months (p<0.01). Interpretation Comorbidity-based phenotypes were identified and associated with different expression of in-hospital complications, mortality, treatment response, and sequelae, with CKD playing a major role. This could help clinicians in day-to-day decision making including the management of post-discharge COVID-19 sequelae. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd

    Single nucleotide variations in ZBTB46 are associated with post-thrombolytic parenchymal haematoma

    Get PDF
    Haemorrhagic transformation is a complication of recombinant tissue-plasminogen activator treatment. The most severe form, parenchymal haematoma, can result in neurological deterioration, disability, and death. Our objective was to identify single nucleotide variations associated with a risk of parenchymal haematoma following thrombolytic therapy in patients with acute ischaemic stroke. A fixed-effect genome-wide meta-analysis was performed combining two-stage genome-wide association studies (n = 1904). The discovery stage (three cohorts) comprised 1324 ischaemic stroke individuals, 5.4% of whom had a parenchymal haematoma. Genetic variants yielding a P-value < 0.05 1 x 10(-5) were analysed in the validation stage (six cohorts), formed by 580 ischaemic stroke patients with 12.1% haemorrhagic events. All participants received recombinant tissue-plasminogen activator; cases were parenchymal haematoma type 1 or 2 as defined by the European Cooperative Acute Stroke Study (ECASS) criteria. Genome-wide significant findings (P < 5 x 10(-8)) were characterized by in silica functional annotation, gene expression, and DNA regulatory elements. We analysed 7 989 272 single nucleotide polymorphisms and identified a genome-wide association locus on chromosome 20 in the discovery cohort; functional annotation indicated that the ZBTB46 gene was driving the association for chromosome 20. The top single nucleotide polymorphism was rs76484331 in the ZBTB46 gene [P = 2.49 x 10(-8); odds ratio (OR): 11.21; 95% confidence interval (CI): 4.82-26.55]. In the replication cohort (n = 580), the rs76484331 polymorphism was associated with parenchymal haematoma (P = 0.01), and the overall association after meta-analysis increased (P = 1.61 x 10(-8), OR: 5.84; 95% CI: 3.16-10.76). ZBTB46 codes the zinc finger and BTB domain-containing protein 46 that acts as a transcription factor. In silica studies indicated that ZBTB46 is expressed in brain tissue by neurons and endothelial cells. Moreover, rs76484331 interacts with the promoter sites located at 20q13. In conclusion, we identified single nucleotide variants in the ZBTB46 gene associated with a higher risk of parenchymal haematoma following recombinant tissue-plasminogen activator treatment.Peer reviewe

    Effects of intubation timing in patients with COVID-19 throughout the four waves of the pandemic : a matched analysis

    Get PDF
    The primary aim of our study was to investigate the association between intubation timing and hospital mortality in critically ill patients with COVID-19-associated respiratory failure. We also analysed both the impact of such timing throughout the first four pandemic waves and the influence of prior non-invasive respiratory support on outcomes. This is a secondary analysis of a multicentre, observational and prospective cohort study that included all consecutive patients undergoing invasive mechanical ventilation due to COVID-19 from across 58 Spanish intensive care units (ICU) participating in the CIBERESUCICOVID project. The study period was between 29 February 2020 and 31 August 2021. Early intubation was defined as that occurring within the first 24 h of intensive care unit (ICU) admission. Propensity score (PS) matching was used to achieve balance across baseline variables between the early intubation cohort and those patients who were intubated after the first 24 h of ICU admission. Differences in outcomes between early and delayed intubation were also assessed. We performed sensitivity analyses to consider a different timepoint (48 h from ICU admission) for early and delayed intubation. Of the 2725 patients who received invasive mechanical ventilation, a total of 614 matched patients were included in the analysis (307 for each group). In the unmatched population, there were no differences in mortality between the early and delayed groups. After PS matching, patients with delayed intubation presented higher hospital mortality (27.3% versus 37.1%, p =0.01), ICU mortality (25.7% versus 36.1%, p=0.007) and 90-day mortality (30.9% versus 40.2%, p=0.02) when compared to the early intubation group. Very similar findings were observed when we used a 48-hour timepoint for early or delayed intubation. The use of early intubation decreased after the first wave of the pandemic (72%, 49%, 46% and 45% in the first, second, third and fourth wave, respectively; first versus second, third and fourth waves p<0.001). In both the main and sensitivity analyses, hospital mortality was lower in patients receiving high-flow nasal cannula (n=294) who were intubated earlier. The subgroup of patients undergoing NIV (n=214) before intubation showed higher mortality when delayed intubation was set as that occurring after 48 h from ICU admission, but not when after 24 h. In patients with COVID-19 requiring invasive mechanical ventilation, delayed intubation was associated with a higher risk of hospital mortality. The use of early intubation significantly decreased throughout the course of the pandemic. Benefits of such an approach occurred more notably in patients who had received high-flow nasal cannul

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (&gt;66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
    corecore