651 research outputs found

    Hyperelastic modelling of nonlinear running surfaces

    Get PDF
    Accurate, 3-D analyses of running impact require a constitutive model of the running surface that includes the material nonlinearity shown by many modern surfaces. This paper describes a hyperelastic continuum that mimics the experimentally measured response of a particular treadmill surface. The material model sacrifices a little accuracy to admit a robust, low-order hyperelastic strain-energy functional. This helps prevent the premature termination of finite element simulations, due to numerical or material instabilities, that can occur with higher-order functionals. With only two free constants, it is also a more practical design tool. The best fit to the quasi-static response of the treadmill was achieved with an initial shear modulus =2 MPa and a power-stiffening index =25. The paper outlines the method used to derive the material constants for the treadmill, a device that is not amenable to the usual materials laboratory tests and must be reverse-engineered. Finite element analyses were then performed to ensure that the treadmill model interacts with the other components of the multibody running system in a numerically stable and physically realistic manner. The model surface was struck by a rigid heel, cushioned by a hyperfoam material that represents a shoe midsole. The results show that, while the ground reaction force is similar to that obtained with a rigid surface, the maximum principal stress in the shoe is reduced by 15%. Such a reduction, particularly when endured over many load cycles, may have a significant effect on comfort and damage to nearby tissue

    Early Atomic Models - From Mechanical to Quantum (1904-1913)

    Get PDF
    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J. J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic {\alpha}-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.Comment: 58 Pages + References, 8 Figures. Accepted for publication in the European Physical Journal H (Historical Perspectives on Contemporary Physics). V2 - minor typos corrected and a footnote added to p.2

    Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings

    Get PDF
    It has been acknowledged that stresses within a thermal barrier coating (TBC) and its durability are significantly affected by the coating interfaces. This paper presents a finite element approach for stress analysis of the plasma sprayed TBC system, using three-dimensional (3D) coating interfaces. 3D co-ordinates of the coating surfaces were measured through 3D reconstruction of scanning electron microscope (SEM) images. These co-ordinates were post processed to reconstruct finite element models for use in stress analyses. A surface profile unit cell approach with appropriate boundary conditions was applied to reduce the problem size and hence computation time. It has been shown that for an identical aspect ratio of the coating interface, interfacial out-of-plane stresses for 3D models are around twice the values predicted using 2D models. Based on predicted stress development within the systems, possible crack development and failure mechanisms of the TBC systems can be predicted

    Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition

    Full text link
    In this paper we investigate the effect of stochasticity in the spatial and temporal distribution of supernova remnants on the spectrum and chemical composition of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. In particular, at high energies we assume that D(E)\sim E^{\delta}, with δ=1/3\delta=1/3 and δ=0.6\delta=0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars, with and without accounting for the spiral structure of the Galaxy. We find that the stochastic fluctuations induced by the spatial and temporal distribution of supernovae, together with the effect of spallation of nuclei, lead to mild but sensible violations of the simple, leaky-box-inspired rule that the spectrum observed at Earth is N(E)EαN(E)\propto E^{-\alpha} with α=γ+δ\alpha=\gamma+\delta, where γ\gamma is the slope of the cosmic ray injection spectrum at the sources. Spallation of nuclei, even with the small rates appropriate for He, may account for slight differences in spectral slopes between different nuclei, providing a possible explanation for the recent CREAM observations. For δ=1/3\delta=1/3 we find that the slope of the proton and helium spectra are 2.67\sim 2.67 and 2.6\sim 2.6 respectively at energies above 1 TeV (to be compared with the measured values of 2.66±0.022.66\pm 0.02 and 2.58±0.022.58\pm 0.02). For δ=0.6\delta=0.6 the hardening of the He spectra is not observed. We also comment on the effect of time dependence of the escape of cosmic rays from supernova remnants, and of a possible clustering of the sources in superbubbles. In a second paper we will discuss the implications of these different scenarios for the anisotropy of cosmic rays.Comment: 28 pages, To appear in JCA

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore