94 research outputs found

    Combination immunotherapy with anti-PD-L1 antibody and depletion of regulatory T cells during acute viral infections results in improved virus control but lethal immunopathology

    Get PDF
    Combination immunotherapy (CIT) is currently applied as a treatment for different cancers and is proposed as a cure strategy for chronic viral infections. Whether such therapies are efficient during an acute infection remains elusive. To address this, inhibitory receptors were blocked and regulatory T cells depleted in acutely Friend retrovirus-infected mice. CIT resulted in a dramatic expansion of cytotoxic CD4+ and CD8+ T cells and a subsequent reduction in viral loads. Despite limited viral replication, mice developed fatal immunopathology after CIT. The pathology was most severe in the gastrointestinal tract and was mediated by granzyme B producing CD4+ and CD8+ T cells. A similar post-CIT pathology during acute Influenza virus infection of mice was observed, which could be prevented by vaccination. Melanoma patients who developed immune-related adverse events under immune checkpoint CIT also presented with expanded granzyme-expressing CD4+ and CD8+ T cell populations. Our data suggest that acute infections may induce immunopathology in patients treated with CIT, and that effective measures for infection prevention should be applied

    A High-Throughput Screen Indicates Gemcitabine and JAK Inhibitors May be Useful for Treating Pediatric AML

    Get PDF
    Improvement in survival has been achieved for children and adolescents with AML but is largely attributed to enhanced supportive care as opposed to the development of better treatment regimens. High risk subtypes continue to have poor outcomes with event free survival rates \u3c 40% despite the use of high intensity chemotherapy in combination with hematopoietic stem cell transplant. Here we combine high-throughput screening, intracellular accumulation assays, and in vivo efficacy studies to identify therapeutic strategies for pediatric AML. We report therapeutics not currently used to treat AML, gemcitabine and cabazitaxel, have broad anti-leukemic activity across subtypes and are more effective relative to the AML standard of care, cytarabine, both in vitro and in vivo. JAK inhibitors are selective for acute megakaryoblastic leukemia and significantly prolong survival in multiple preclinical models. Our approach provides advances in the development of treatment strategies for pediatric AML

    Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: A retrospective study by the I-BFM study group

    Get PDF
    To study the prognostic relevance of rare genetic aberrations in acute myeloid leukemia (AML), such as t(16:21), international collaboration is required. Two different types of t(16:21) translocations can be distinguished: t(16:21)(p11;q22), resulting in the FUS-ERG fusion gene; and t(16:21)(q24;q22), resulting in RUNX1-core binding factor (CBFA2T3). We collected data on clinical and biological characteristics of 54 pediatric AML cases with t(16:21) rearrangements from 14 international collaborative study groups participating in the international Berlin-Frankfurt-Miinster (I-BFM) AML study group. The AML-BFM cohort diagnosed between 1997 and 2013 was used as a reference cohort. RUNX1-CBFA2T3 (n = 23) had significantly lower median white blood cell count (12.5 x 10(9)/L, P = .03) compared with the reference cohort. FUS-ERG rearranged AML (n = 31) had no predominant French-American-British (FAB) type, whereas 76% of RUNX1-CBFA2T3 had an M1/M2 FAB type (M1, M2), significantly different from the reference cohort (P = .004). Four-year event-free survival (EFS) of patients with FUS-ERG was 7% (standard error [SE] = 5%), significantly lower compared with the reference cohort (51%, SE = 1%, P < .001). Four-year EFS of RUNX1-CBFA2T3 was 77% (SE = 8%, P = .06), significantly higher compared with the reference cohort. Cumulative incidence of relapse was 74% (SE = 8%) in FUS-ERG, 0% (SE = 0%) in RUNX1-CBFA2T3, compared with 32% (SE = 1%) in the reference cohort (P < .001). Multivariate analysis identified both FUS-ERG and RUNX1-CBFA2T3 as independent risk factors with hazard ratios of 1.9 (P < .0001) and 0.3 (P = .025), respectively. These results describe 2 clinically relevant distinct subtypes of pediatric AML. Similarly to other core-binding factor AMLs, patients with RUNX1-CBFA2T3 rearranged AML may benefit from stratification in the standard risk treatment, whereas patients with FUS-ERG rearranged AML should be considered high-risk

    Ligand-Directed Chemistry on Glycoside Hydrolases – A Proof of Concept Study

    Get PDF
    Selective covalent labelling of enzymes using small molecule probes has advanced the scopes of protein profiling. The covalent bond formation to a specific target is the key step of activity-based protein profiling (ABPP), a method which has become an indispensable tool for measuring enzyme activity in complex matrices. With respect to carbohydrate processing enzymes, strategies for ABPP so far involve labelling the active site of the enzyme, which results in permanent loss of activity. Here, we report in a proof of concept study the use of ligand-directed chemistry (LDC) for labelling glycoside hydrolases near – but not in – the active site. During the labelling process, the competitive inhibitor is cleaved from the probe, departs the active site and the enzyme maintains its catalytic activity. To this end, we designed a building block synthetic concept for small molecule probes containing iminosugar-based reversible inhibitors for labelling of two model β-glucosidases. The results indicate that the LDC approach can be adaptable for covalent proximity labelling of glycoside hydrolases.T. M. W. thanks the FWF (Wien, Austria) for financial support (project number P30372-B21). Authors from TU Graz acknowledge support from NAWI Graz.Peer reviewe

    Recommendations, guidelines, and best practice for the use of human induced pluripotent stem cells for neuropharmacological studies of neuropsychiatric disorders

    Get PDF
    The number of individuals suffering from neuropsychiatric disorders (NPDs) has increased worldwide, with 3 million disability-adjusted life-years calculated in 2019. Though research using various approaches including genetics, imaging, clinical and animal models has advanced our knowledge regarding NPDs, we still lack basic knowledge regarding the underlying pathophysiological mechanisms. Moreover, there is an urgent need for highly effective therapeutics for NPDs. Human induced pluripotent stem cells (hiPSCs) generated from somatic cells enabled scientists to create brain cells in a patient-specific manner. However, there are challenges to the use of hiPSCs that need to be addressed. In the current paper, consideration of best practices for neuropharmacological and neuropsychiatric research using hiPSCs will be discussed. Specifically, we provide recommendations for best practice in patient recruitment, including collecting demographic, clinical, medical (before and after treatment and response), diagnostic (including scales) and genetic data from the donors. We highlight considerations regarding donor genetics and sex, in addition to discussing biological and technical replicates. Furthermore, we present our views on selecting control groups/lines, experimental designs, and considerations for conducting neuropharmacological studies using hiPSC-based models in the context of NPDs. In doing so, we explore key issues in the field concerning reproducibility, statistical analysis, and how to translate in vitro studies into clinically relevant observations. The aim of this article is to provide a key resource for hiPSC researchers to perform robust and reproducible neuropharmacological studies, with the ultimate aim of improving identification and clinical translation of novel therapeutic drugs for NPDs

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
    corecore