45 research outputs found

    Early rapid weight gain and subsequent overweight and obesity in middle childhood in Peru

    Get PDF
    BACKGROUND: Rapid postnatal weight gain is associated with risk of overweight and obesity, but it’s unclear whether this holds in populations exposed to concurrent obesogenic risk factors and for children who have been extensively breastfed. This study investigates whether an increase in weight for age from birth to 1 year (infancy) and from 1 to 5 years (early childhood) predicts overweight and obesity, and waist circumference at 8 years, using data from a longitudinal cohort study in Peru. METHODS: Generalized estimating equations (GEE) models were constructed for overweight and obesity, obesity alone and waist circumference at 8 years versus rapid weight gain in infancy, and early childhood including adjusted models to account for confounders. RESULTS: Rapid weight gain in both periods was associated with double the risk of overweight and obesity, obesity alone at 8 years and increased waist circumference even after controlling for maternal BMI and education level, sex of child, height-for-age at 8 years, consumption of “fast food” and number of days of active exercise. The association was significant, with some differences, for children in both rural and urban environments. CONCLUSIONS: Rapid weight gain in infancy and in early childhood in Peru is associated with overweight and obesity at age 8 years even when considering other determinants of childhood obesity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40608-016-0135-z) contains supplementary material, which is available to authorized users

    The endocannabinoid system controls food intake via olfactory processes

    Get PDF
    Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore