659 research outputs found

    The normative underpinnings of population-level alcohol use: An individual-level simulation model

    Get PDF
    Background. By defining what is “normal,” appropriate, expected, and unacceptable, social norms shape human behavior. However, the individual-level mechanisms through which social norms impact population-level trends in health-relevant behaviors are not well understood. Aims. To test the ability of social norms mechanisms to predict changes in population-level drinking patterns. Method. An individual-level model was developed to simulate dynamic normative mechanisms and behavioral rules underlying drinking behavior over time. The model encompassed descriptive and injunctive drinking norms and their impact on frequency and quantity of alcohol use. A microsynthesis initialized in 1979 was used as a demographically representative synthetic U.S. population. Three experiments were performed in order to test the modelled normative mechanisms. Results. Overall, the experiments showed limited influence of normative interventions on population-level alcohol use. An increase in the desire to drink led to the most meaningful changes in the population’s drinking behavior. The findings of the experiments underline the importance of autonomy, that is, the degree to which an individual is susceptible to normative influence. Conclusion. The model was able to predict theoretically plausible changes in drinking patterns at the population level through the impact of social mechanisms. Future applications of the model could be used to plan norms interventions pertaining to alcohol use as well as other health behaviors

    Multiobjective genetic programming can improve the explanatory capabilities of mechanism-based models of social systems

    Get PDF
    The generative approach to social science, in which agent-based simulations (or other complex systems models) are executed to reproduce a known social phenomenon, is an important tool for realist explanation. However, a generative model, when suitably calibrated and validated using empirical data, represents just one viable candidate set of entities and mechanisms. The model only partially addresses the needs of an abductive reasoning process - specifically it does not provide insight into other viable sets of entities or mechanisms, nor suggest which of these are fundamentally constitutive for the phenomenon to exist. In this paper, we propose a new model discovery framework that more fully captures the needs of realist explanation. The framework exploits the implicit ontology of an existing human-built generative model to propose and test a plurality of new candidate model structures. Genetic programming is used to automate this search process. A multi-objective approach is used, which enables multiple perspectives on the value of any particular generative model - such as goodness-of-fit, parsimony, and interpretability - to be represented simultaneously. We demonstrate this new framework using a complex systems modeling case study of change and stasis in societal alcohol use patterns in the US over the period 1980-2010. The framework is successful in identifying three competing explanations of these alcohol use patterns, using novel integrations of social role theory not previously considered by the human modeler. Practitioners in complex systems modeling should use model discovery to improve the explanatory utility of the generative approach to realist social science

    Using multi-objective grammar-based genetic programming to integrate multiple social theories in agent-based modeling

    Get PDF
    Different theoretical mechanisms have been proposed for explaining complex social phenomena. For example, explanations for observed trends in population alcohol use have been postulated based on norm theory, role theory, and others. Many mechanism-based models of phenomena attempt to translate a single theory into a simulation model. However, single theories often only represent a partial explanation for the phenomenon. The potential of integrating theories together, computationally, represents a promising way of improving the explanatory capability of generative social science. This paper presents a framework for such integrative model discovery, based on multi-objective grammar-based genetic programming (MOGGP). The framework is demonstrated using two separate theory-driven models of alcohol use dynamics based on norm theory and role theory. The proposed integration considers how the sequence of decisions to consume the next drink in a drinking occasion may be influenced by factors from the different theories. A new grammar is constructed based on this integration. Results of the MOGGP model discovery process find new hybrid models that outperform the existing single-theory models and the baseline hybrid model. Future work should consider and further refine the role of domain experts in defining the meaningfulness of models identified by MOGGP

    Can social norms explain long-term trends in alcohol use? Insights from inverse generative social science

    Get PDF
    Social psychological theory posits entities and mechanisms that attempt to explain observable differences in behavior. For example, dual process theory suggests that an agent's behavior is influenced by intentional (arising from reasoning involving attitudes and perceived norms) and unintentional (i.e., habitual) processes. In order to pass the generative sufficiency test as an explanation of alcohol use, we argue that the theory should be able to explain notable patterns in alcohol use that exist in the population, e.g., the distinct differences in drinking prevalence and average quantities consumed by males and females. In this study, we further develop and apply inverse generative social science (iGSS) methods to an existing agent-based model of dual process theory of alcohol use. Using iGSS, implemented within a multi-objective grammar-based genetic program, we search through the space of model structures to identify whether a single parsimonious model can best explain both male and female drinking, or whether separate and more complex models are needed. Focusing on alcohol use trends in New York State, we identify an interpretable model structure that achieves high goodness-of-fit for both male and female drinking patterns simultaneously, and which also validates successfully against reserved trend data. This structure offers a novel interpretation of the role of norms in formulating drinking intentions, but the structure's theoretical validity is questioned by its suggestion that individuals with low autonomy would act against perceived descriptive norms. Improved evidence on the distribution of autonomy in the population is needed to understand whether this finding is substantive or is a modeling artefact

    Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis

    Get PDF
    peer-reviewedThe objective of this study was to compare mid-infrared reflectance spectroscopy (MIRS) analysis of milk and near-infrared reflectance spectroscopy (NIRS) analysis of feces with regard to their ability to predict the dry matter intake (DMI) of lactating grazing dairy cows. A data set comprising 1,074 records of DMI from 457 cows was available for analysis. Linear regression and partial least squares regression were used to develop the equations using the following variables: (1) milk yield (MY), fat percentage, protein percentage, body weight (BW), stage of lactation (SOL), and parity (benchmark equation); (2) MIRS wavelengths; (3) MIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity; (4) NIRS wavelengths; (5) NIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity; (6) MIRS and NIRS wavelengths; and (7) MIRS wavelengths, NIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity. The equations were validated both within herd using animals from similar experiments and across herds using animals from independent experiments. The accuracy of equations was greater for within-herd validation compared with across-herds validation. Across-herds validation was deemed the more suitable method to assess equations for robustness and real-world application. The benchmark equation was more accurate [coefficient of determination (R2) = 0.60; root mean squared error (RMSE) = 1.68 kg] than MIRS alone (R2 = 0.30; RMSE = 2.23 kg) or NIRS alone (R2 = 0.16; RMSE = 2.43 kg). The combination of the benchmark equation with MIRS (R2 = 0.64; RMSE = 1.59 kg) resulted in slightly superior fitting statistics compared with the benchmark equation alone. The combination of the benchmark equation with NIRS (R2 = 0.58; RMSE = 1.71 kg) did not result in a more accurate prediction equation than the benchmark equation. The combination of MIRS and NIRS wavelengths resulted in superior fitting statistics compared with either method alone (R2 = 0.36; RMSE = 2.15 kg). The combination of the benchmark equation and MIRS and NIRS wavelengths resulted in the most accurate equation (R2 = 0.68; RMSE = 1.52 kg). A further analysis demonstrated that Holstein-Friesian cows could predict the DMI of Jersey × Holstein-Friesian crossbred cows using both MIRS and NIRS. Similarly, the Jersey × Holstein-Friesian animals could predict the DMI of Holstein-Friesian cows using both MIRS and NIRS. The equations developed in this study have the capacity to predict DMI of grazing dairy cows. From a practicality perspective, MIRS in combination with variables in the benchmark equation is the most suitable equation because MIRS is currently used on all milk-recorded milk samples from dairy cows

    An integrated dual process simulation model of alcohol use behaviours in individuals, with application to US population-level consumption, 1984–2012

    Get PDF
    Introduction The Theory of Planned Behaviour (TPB) describes how attitudes, norms and perceived behavioural control guide health behaviour, including alcohol consumption. Dual Process Theories (DPT) suggest that alongside these reasoned pathways, behaviour is influenced by automatic processes that are determined by the frequency of engagement in the health behaviour in the past. We present a computational model integrating TPB and DPT to determine drinking decisions for simulated individuals. We explore whether this model can reproduce historical patterns in US population alcohol use and simulate a hypothetical scenario, “Dry January”, to demonstrate the utility of the model for appraising the impact of policy interventions on population alcohol use. Method Constructs from the TPB pathway were computed using equations from an existing individual-level dynamic simulation model of alcohol use. The DPT pathway was initialised by simulating individuals’ past drinking using data from a large US survey. Individuals in the model were from a US population microsimulation that accounts for births, deaths and migration (1984–2015). On each modelled day, for each individual, we calculated standard drinks consumed using the TPB or DPT pathway. In each year we computed total population alcohol use prevalence, frequency and quantity. The model was calibrated to alcohol use data from the Behavioral Risk Factor Surveillance System (1984–2004). Results The model was a good fit to prevalence and frequency but a poorer fit to quantity of alcohol consumption, particularly in males. Simulating Dry January in each year led to a small to moderate reduction in annual population drinking. Conclusion This study provides further evidence, at the whole population level, that a combination of reasoned and implicit processes are important for alcohol use. Alcohol misuse interventions should target both processes. The integrated TPB-DPT simulation model is a useful tool for estimating changes in alcohol consumption following hypothetical population interventions

    Introducing CASCADEPOP: an open-source sociodemographic simulation platform for US health policy appraisal

    Get PDF
    Largescale individual-level and agent-based models are gaining importance in health policy appraisal and evaluation. Such models require the accurate depiction of the jurisdiction’s population over extended time periods to enable modeling of the development of non-communicable diseases under consideration of historical, sociodemographic developments. We developed CASCADEPOP to provide a readily available sociodemographic micro-synthesis and microsimulation platform for US populations. The micro-synthesis method used iterative proportional fitting to integrate data from the US Census, the American Community Survey, the Panel Study of Income Dynamics, Multiple Cause of Death Files, and several national surveys to produce a synthetic population aged 12 to 80 years on 01/01/1980 for five states (California, Minnesota, New York, Tennessee, and Texas) and the US. Characteristics include individuals’ age, sex, race/ethnicity, marital/employment/parental status, education, income and patterns of alcohol use as an exemplar health behavior. The microsimulation simulates individuals’ sociodemographic life trajectories over 35 years to 31/12/2015 accounting for population developments including births, deaths, and migration. Results comparing the 1980 micro-synthesis against observed data shows a successful depiction of state and US population characteristics and of drinking. Comparing the microsimulation over 30 years with Census data also showed the successful simulation of sociodemographic developments. The CASCADEPOP platform enables modelling of health behaviors across individuals’ life courses and at a population level. As it contains a large number of relevant sociodemographic characteristics it can be further developed by researchers to build US agent-based models and microsimulations to examine health behaviors, interventions, and policies

    Exercise, Service and Support: Client Experiences of Physical Activity Referral Schemes(PARS)

    Get PDF
    Physical activity referral schemes (PARS) represent one of the most prevalent interventions in the fight against chronic illness such as coronary heart disease and obesity. Despite this, issues surrounding low retention and adherence continue to hinder the potential effectiveness of such schemes on public health. This article reports on the second stage of a larger investigation into client experiences of PARS focusing specifically on findings from five client-based focus groups and interviews with five Scheme Organisers. The resulting analysis reveals three main factors impacting participant perceptions of the quality of service and support received: the organisation of PARS provision, client engagement with the PARS community and the nature and extent of client support networks. The article demonstrates that staff have a considerable role to play in engaging clients in the PARS system and that Scheme Organisers should give serious thought to ensuring that clients have valuable and sustainable networks of support. Furthermore, it is suggested that Scheme Organisers need to facilitate a system in which staff are genuinely engaged with the needs of clients and are able to provide individualised programmes of physical activity

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore