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ABSTRACT

The objective of this study was to compare mid-
infrared reflectance spectroscopy (MIRS) analysis of 
milk and near-infrared reflectance spectroscopy (NIRS) 
analysis of feces with regard to their ability to predict 
the dry matter intake (DMI) of lactating grazing dairy 
cows. A data set comprising 1,074 records of DMI from 
457 cows was available for analysis. Linear regression 
and partial least squares regression were used to de-
velop the equations using the following variables: (1) 
milk yield (MY), fat percentage, protein percentage, 
body weight (BW), stage of lactation (SOL), and par-
ity (benchmark equation); (2) MIRS wavelengths; (3) 
MIRS wavelengths, MY, fat percentage, protein per-
centage, BW, SOL, and parity; (4) NIRS wavelengths; 
(5) NIRS wavelengths, MY, fat percentage, protein 
percentage, BW, SOL, and parity; (6) MIRS and NIRS 
wavelengths; and (7) MIRS wavelengths, NIRS wave-
lengths, MY, fat percentage, protein percentage, BW, 
SOL, and parity. The equations were validated both 
within herd using animals from similar experiments 
and across herds using animals from independent ex-
periments. The accuracy of equations was greater for 
within-herd validation compared with across-herds 
validation. Across-herds validation was deemed the 
more suitable method to assess equations for robust-
ness and real-world application. The benchmark equa-
tion was more accurate [coefficient of determination 
(R2) = 0.60; root mean squared error (RMSE) = 1.68 
kg] than MIRS alone (R2 = 0.30; RMSE = 2.23 kg) 
or NIRS alone (R2 = 0.16; RMSE = 2.43 kg). The 
combination of the benchmark equation with MIRS (R2 
= 0.64; RMSE = 1.59 kg) resulted in slightly superior 
fitting statistics compared with the benchmark equa-
tion alone. The combination of the benchmark equa-
tion with NIRS (R2 = 0.58; RMSE = 1.71 kg) did not 

result in a more accurate prediction equation than the 
benchmark equation. The combination of MIRS and 
NIRS wavelengths resulted in superior fitting statistics 
compared with either method alone (R2 = 0.36; RMSE 
= 2.15 kg). The combination of the benchmark equa-
tion and MIRS and NIRS wavelengths resulted in the 
most accurate equation (R2 = 0.68; RMSE = 1.52 kg). 
A further analysis demonstrated that Holstein-Friesian 
cows could predict the DMI of Jersey × Holstein-
Friesian crossbred cows using both MIRS and NIRS. 
Similarly, the Jersey × Holstein-Friesian animals could 
predict the DMI of Holstein-Friesian cows using both 
MIRS and NIRS. The equations developed in this study 
have the capacity to predict DMI of grazing dairy cows. 
From a practicality perspective, MIRS in combination 
with variables in the benchmark equation is the most 
suitable equation because MIRS is currently used on all 
milk-recorded milk samples from dairy cows.
Key words: dry matter intake, near-infrared reflectance 
spectroscopy, mid-infrared reflectance spectroscopy, 
grazing dairy cow

INTRODUCTION

Feed efficiency is an important component of dairy 
systems (Berry and Crowley, 2013; Connor, 2015). A 
major obstacle to the direct inclusion of feed efficiency 
in dairy breeding programs is routine access to indi-
vidual animal feed intake data from commercial dairy 
farms (Berry et al., 2014; Connor, 2015). In grazing 
systems, the measurement of individual animal feed 
intake is an extremely difficult task (Coleman, 2005). 
The n-alkane technique (Mayes et al., 1986; Dillon and 
Stakelum, 1989) is commonly used to estimate dietary 
DMI in grazing dairy cows (Prendiville et al., 2009; 
Schori and Münger, 2014; Hurley et al., 2017). How-
ever, this method is expensive and labor intensive and 
thus is applicable only under research conditions. The 
energy sinks milk production and BW have been widely 
used to predict the DMI of dairy cows (Vazquez and 
Smith, 2000; NRC, 2001). The identification of alterna-
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tive variables that explain additional variation on DMI 
may prove worthwhile, particularly if they have the 
potential to be recorded routinely at the commercial 
farm level.

Infrared reflectance spectroscopy measures the in-
teraction of electromagnetic radiation with matter, 
which gives information on the chemical makeup of a 
constituent (Williams, 2005). Mid-infrared reflectance 
spectroscopy (MIRS) and near-infrared reflectance 
spectroscopy (NIRS) are both routinely used in the 
agrifood industry (McParland and Berry, 2016). The 
techniques differ in the region of the electromagnetic 
spectrum measured: MIRS uses the fundamental bands 
of molecular vibrations, whereas NIRS measures the 
overtones and combinations of these fundamental bands 
(Williams, 1987). Mid-infrared reflectance spectroscopy 
analysis of milk can provide information on detailed 
fatty acids (Soyeurt et al., 2011) and proteins (McDer-
mott et al., 2016), whereas NIRS analysis of feces can 
be used to predict OM digestibility (Decruyenaere et 
al., 2009).

The ability of MIRS analysis of milk to estimate the 
intake of dairy cows has recently been documented 
(McParland et al., 2011; Shetty et al., 2017). Similarly, 
NIRS analysis of feces has been reported as a poten-
tially useful method of estimating intake (Boval et al., 
2004; Johnson et al., 2017). To date, no study has com-
pared MIRS analysis of milk and NIRS analysis of feces 
to predict the DMI of dairy cows. A direct comparison 
among these methods to predict DMI in combination 
with known animal energy sinks and status traits would 
determine their accuracy, robustness, and aptness for 
use on commercial dairy farms.

A further consideration is the incidence of Jersey 
genetics among pasture-based dairy herds (Department 
of Agriculture, Food and the Marine, 2017). Associ-
ated with increased Jersey genetics in pasture-based 
systems is a propensity for increased DMI per unit of 
BW and consequent increases in production efficiency 
(Prendiville et al., 2009; Coffey et al., 2017). Hence, the 
evaluation of any methods to estimate DMI should take 
this subject into consideration.

The primary objective of this study was to evaluate 
the ability of MIRS of milk compared with NIRS of 
feces to predict the DMI of grazing dairy cows. A sec-
ondary objective was to compare equations to predict 
the DMI of Holstein-Friesian (HF) animals using HF × 
Jersey cross-bred (JE × HF) animals and vice versa.

MATERIALS AND METHODS

Data were available from 4 Teagasc, Animal and 
Grassland, Research and Innovation Centre research 
herds as part of separate grazing research experiments. 

Each experiment assessed the effect of altering dietary 
allowance on cow performance. Experiments assessed 
the effect of offering (1) perennial ryegrass (Lolium 
perenne L.) and white clover (Trifolium repens L.; Mc-
Carthy et al., 2015), (2) pasture at differing stocking 
rates (2.5, 2.9, and 3.3 cows/ha; Coffey et al., 2017), 
(3) differing pasture allowances (60, 80, 100, and 120% 
of intake capacity) in early lactation (Kennedy et al., 
2015), and (4) differing herbage and concentrate al-
lowances across 2 genetic lines of HF (O’Sullivan et 
al., 2019). Experiments 1 to 3 comprised both HF and 
JE × HF cows, whereas experiment 4 exclusively com-
prised HF cows. Each experimental herd was managed 
in a rotational grazing system similar to that described 
by Roche et al. (2017), with fresh pasture allocated 
every 12 to 48 h.

Across experiments, individual animal DMI was es-
timated up to 4 times during lactation. Dry matter 
intake was estimated in early, mid, and late lactation 
in experiments 1, 2, and 4 and early to mid lactation 
in experiment 3. The diet of the animals consisted pri-
marily of perennial ryegrass or perennial ryegrass plus 
supplementary concentrate (0.9–3.6 kg of DM/cow per 
day).

Measurements

The DMI of the animals in all experiments was esti-
mated using the n-alkane technique (Mayes et al., 1986) 
as modified by Dillon and Stakelum (1989). Briefly, cows 
were dosed twice daily after milking for a 12-d period 
using paper pellets containing 500 mg of C32-alkane 
(n-dotriacontane) each. Feces were sampled on d 7 to 
12 before morning and evening milking. These samples 
were subsequently bulked (12 g/sample) and placed in 
a 40°C oven before being milled using a 1-mm sieve. 
Herbage representative of that grazed by the cows was 
sampled manually on d 6 to 11 of each DMI estimation 
period. The ratio of naturally occurring C33-alkane 
(tritriacontane) in the herbage to dosed C32-alkane was 
used to calculate DMI.

Near-infrared reflectance values of the bulked fe-
cal samples from each DMI estimation period were 
gathered using a Foss-NIRSystem 6500 SYII scanning 
monochromator (Foss-NIRSystems, Silver Spring, MD). 
Rectangular quartz cells (4.6 cm wide and 5.7 cm long) 
were used to scan each fecal sample. The spectral ab-
sorbance value of each fecal sample was recorded as log 
reflectance values over the wavelength range of 1,100 to 
2,496 nm giving 699 individual data points. All spectral 
data points were retained for analysis.

Throughout each DMI estimation period, BW was re-
corded once following morning milking using calibrated 
weighing scales. Individual cow milk yield (MY) was 
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recorded daily throughout each DMI estimation period 
using electronic milk meters (Dairymaster, Causeway, 
Co. Kerry, Ireland). Milk was sampled from consecutive 
evening and morning milkings once weekly during each 
DMI estimation period. These samples were analyzed 
using a Foss Milkoscan FT6000 spectrometer (Foss 
Electric A/S, Hillerød, Denmark) to determine fat and 
protein content. The milk mid-infrared spectral data 
were subsequently stored for further analysis. The Foss 
MIR spectrum contains 1,060 data points represent-
ing the absorption of infrared light through the milk 
sample in the mid-infrared region of 900 to 5,000 cm−1. 
Spectral data were transformed from transmittance to 
linear absorbance through log transformation of the re-
ciprocal wavelength values (Soyeurt et al., 2011). Wave-
length regions associated with water absorption (Shetty 
et al., 2017) were omitted, resulting in the spectral data 
points between 925 to 1,600 cm−1 and 1,700 to 3,005 
cm−1 being retained for analysis.

Treatment of Spectral Data

Boxcar smoothing (rolling averages) of both NIRS 
and MIRS was implemented by averaging the spectra 
over segments of 5 data points in length (Williams, 
2005). The first derivative was calculated on both the 
smoothed and unsmoothed spectra to sharpen absor-
bance bands (Williams, 2005). The first derivative (f’x) 
was calculated as the difference between the spectral 
value at data point x and the spectral value at the data 
point x + 5.

Data Editing

The data set comprised 1,681 individual records of 
DMI, of which 1,379 were HF and 302 were JE × HF. 
Records missing BW (n = 53), MIRS (n = 452), or 
NIRS (n = 167) spectra were removed. Values of DMI, 
BW, MY, fat percentage, and protein percentage were 
examined using PROC UNIVARIATE (SAS Institute 
Inc., Cary, NC), and 14 records were removed as they 
were deemed erroneous. Principal component analysis 
(PROC PRIN COMP) was used to generate the first 
2 principal components for the MIRS and NIRS spec-
tra. The Mahalanobis distance from the centroid of 
the MIRS and NIRS clusters was calculated. Samples 
with a Mahalanobis distance greater than the 99.9th 
percentile of the chi-squared distribution with 2 de-
grees of freedom were considered outliers. This revealed 
no NIRS outliers and 15 MIRS outliers, which were 
removed. Animals of third parity plus were grouped 
together. Stage of lactation (SOL) was defined as (1) 
<49, (2) 50 to 99, (3) 100 to 189, and (4) >190 DIM. 

After all edits were completed there were 1,074 (815 
HF and 259 JE × HF) records available for analysis 
from 457 (337 HF and 120 JE × HF) individual cows. 
The mean breed proportion of the HF animals was 73% 
Holstein and 26% Friesian, whereas the mean breed 
proportion of the JE × HF animals was 40% Holstein, 
11% Friesian, and 47% Jersey (Irish Cattle Breeding 
Federation national database).

Prediction Equations

Equations to predict DMI were developed using the 
following variables: (1) MY, fat percentage, protein 
percentage, BW, SOL, and parity, which was used as 
a benchmark with which the following could be com-
pared; (2) MIRS wavelengths; (3) MIRS wavelengths, 
MY, fat percentage, protein percentage, BW, SOL, and 
parity; (4) NIRS wavelengths; (5) NIRS wavelengths, 
MY, fat percentage, protein percentage, BW, SOL, 
and parity; (6) MIRS and NIRS wavelengths; and 
(7) MIRS wavelengths, NIRS wavelengths, MY, fat 
percentage, protein percentage, BW, SOL, and par-
ity. Linear regression was used to develop equation 1, 
whereas partial least squares (PLS) regression (PROC 
PLS) was used to develop all other equations. Split-
sample cross-validation was initially undertaken on all 
PLS models and involved removing every 20th sample 
from the data set and predicting it using data from 
the remaining data set. This was repeated until every 
sample had been predicted once. The optimal number 
of PLS factors retained within the models was defined 
as the minimum number of factors needed to achieve 
the lowest root mean predicted residual sum of squares. 
All equations were subsequently validated within herd 
and across herds.

Within-herd validation involved stratifying the data 
set by experiment, DMI estimation period, and breed; 
25% of the records were removed for validation, and 
the remaining 75% of the data were used to develop 
the models. No animal was present in the training and 
validation data sets at the same time. This procedure 
was repeated 4 times until all records had been tested 
using within-herd validation once. The association be-
tween predicted and observed DMI was assessed using 
regression analysis. The following metrics were used 
to assess the accuracy and robustness of the models: 
the coefficient of determination (R2) between true and 
predicted DMI values, the root mean squared error 
(RMSE) from plotting predicted versus observed DMI, 
the slope between true and predicted DMI values, the 
mean bias of prediction, and the ratio of performance 
deviation (RPD; Williams, 2005; Derby, 2010). The 
R2, RMSE, RPD, and number of factors were reported 
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as the average of the 4 iterations of within-herd valida-
tion. The mean bias and slope were reported as the 
range of values across the 4 iterations.

Across-herds validation was undertaken to assess 
whether equations could predict the DMI of an in-
dependent group of experimental animals. This was 
undertaken in 2 phases by using 3 out of the 4 experi-
ments to develop the models; the remaining experiment 
was used for external validation. This was iterated 
until each experiment had been predicted once. The 
R2, RMSE, RPD, and number of factors were reported 
as the average of the 4 iterations of across-herds valida-
tion. The mean bias and slope were reported as the 
range of values across the 4 iterations.

To determine the ability of the individual breeds 
to perform predictions on one another, all records of 
HF animals were removed from the training data set 
and were used as a validation data set, whereas the 
JE × HF animals alone were used to train the model. 
The procedure was repeated by removing the JE × 
HF animals from the training data set to be used as 
a validation data set, and the HF animals alone were 
used to train the model. Models 3 (MIRS wavelengths, 
MY, fat percentage, protein percentage, BW, SOL, and 
parity) and 5 (NIRS wavelengths, MY, fat percentage, 
protein percentage, BW, SOL, and parity) were used. 
Animals from experiment 4 (n = 553) were removed 
from this part of the analysis because it contained only 
HF animals, resulting in 521 records (HF = 262; JE × 
HF = 259) being available for analysis.

RESULTS

Mean values (±SD in parentheses) of DMI, MY, fat 
percentage, protein percentage, lactose percentage, 
BW, parity, and DIM across the data set were 15.7 
kg/d (3.1), 20.4 kg/d (5.4), 4.5% (0.7), 3.7% (0.4), 
4.8% (0.2), 499 kg (69), 2.0 (0.8), and 124 d (64), re-
spectively. A breakdown of these values for each of the 

4 experiments represented in the data set is presented 
in Table 1.

Using smoothed MIRS and NIRS wavelengths did 
not improve the R2 of prediction over the R2 of the un-
smoothed wavelengths. Likewise, the first derivative of 
the smoothed and unsmoothed MIRS and NIRS spectra 
did not result in more accurate predictions. The results 
presented therefore are from the untreated spectra.

Within-Herd Validation

Table 2 presents the fitting statistics for all 7 equa-
tions evaluated to predict DMI upon within-herd vali-
dation. The use of the animal traits MY, fat percentage, 
protein percentage, BW, SOL, and parity (benchmark 
equation) resulted in a mean R2 of 0.71 (range = 
0.69–0.73) and an RMSE of 1.67 kg (range = 1.61–1.80 
kg). Using MIRS wavelengths alone to predict DMI 
resulted in inferior fitting statistics compared with the 
benchmark equation, with a mean R2 of 0.48 (range = 
0.46–0.52) and an RMSE of 2.24 kg (range = 2.07–2.37 
kg). Combining MIRS wavelengths with the variables in 
the benchmark equation resulted in a mean R2 of 0.76 
(range = 0.75–0.77) and an RMSE of 1.51 kg (range = 
1.44–1.60 kg), which was higher than the benchmark 
equation. Using NIRS wavelengths alone resulted in a 
mean R2 of 0.50 (range = 0.48–0.52) and a mean RMSE 
of 2.19 kg (range = 2.12–2.32 kg). Similar to MIRS, the 
combination of NIRS wavelengths with the variables 
in the benchmark equation resulted in superior fitting 
statistics compared with the benchmark equation, with 
a mean R2 of 0.76 (range = 0.76–0.78) and an RMSE 
of 1.50 kg (range = 1.40–1.58 kg). Combining MIRS 
wavelengths and NIRS wavelengths resulted in superior 
fitting statistics compared with either method alone, 
with an R2 of 0.56 (range = 0.54–0.58) and an RMSE 
of 2.06 kg (1.93–2.16 kg). The combination of the vari-
ables in the benchmark equation with NIRS and MIRS 
resulted in the most accurate equation, with a mean R2 

Table 1. Mean (±SD in parentheses) phenotypic values for each experiment

Item

Experiment1

1 2 3 4

No. of records/cows 99/37 281/131 141/82 553/207
DMI (kg) 17.1 (2.3) 15.7 (3.0) 12.8 (2.4) 16.2 (3.0)
Milk yield (kg) 21.0 (4.7) 20.1 (5.2) 21.6 (5.2) 20.1 (5.6)
Fat (%) 4.6 (0.6) 4.8 (0.7) 4.6 (0.6) 4.3 (0.7)
Protein (%) 3.9 (0.3) 3.7 (0.4) 3.2 (0.3) 3.7 (0.3)
Lactose (%) 4.8 (0.2) 4.8 (0.2) 4.8 (0.1) 4.8 (0.2)
BW (kg) 495 (59) 482 (72) 456 (62) 518 (62)
Parity 2.3 (0.8) 2.2 (0.9) 2.0 (0.9) 1.9 (0.7)
DIM 117 (55) 122 (68) 60 (24) 142 (60)
11 = McCarthy et al. (2015); 2 = Coffey et al. (2017); 3 = Kennedy et al. (2015); 4 = O’Sullivan et al. (2019).



Journal of Dairy Science Vol. 102 No. 10, 2019

DRY MATTER INTAKE AND INFRARED REFLECTANCE SPECTROSCOPY ANALYSIS

of 0.78 (range = 0.77–0.80) and an RMSE of 1.44 kg 
(range = 1.33–1.51 kg).

Across-Herds Validation

Table 3 presents the fitting statistics for all 7 equa-
tions to predict DMI upon across-herds validation. 
The benchmark equation resulted in a mean R2 of 0.60 
(range = 0.51–0.68) and an RMSE of 1.68 kg (range = 
1.33–2.08 kg). The use of MIRS wavelengths alone to 
predict DMI resulted in inferior fitting statistics com-
pared with the benchmark equation, with a mean R2 of 
0.30 (range = 0.15–0.48) and a mean RMSE of 2.23 kg 
(range = 1.70–2.68 kg). Combining MIRS wavelengths 
with the variables in the benchmark equation resulted 
in slightly superior fitting statistics compared with the 
benchmark equation alone, with a mean R2 of 0.64 
(range = 0.51–0.74) and an RMSE of 1.59 kg (range 
= 1.20–1.77 kg). The use of NIRS wavelengths alone 
to predict DMI resulted in a mean R2 of 0.16 (range = 
0.01–0.39) and an RMSE of 2.43 kg (range = 2.09–3.00 
kg). The combination of NIRS wavelengths with the 
variables in the benchmark equation did not result in 
superior fitting statistics compared with the bench-
mark equation alone, with a mean R2 of 0.58 (range = 
0.48–0.64) and an RMSE of 1.71 kg (range = 1.41–1.90 
kg). When NIRS and MIRS were used together to 
predict DMI, the accuracy was greater compared with 
either method alone, with a mean R2 of 0.36 (range 
= 0.28–0.46) and a mean RMSE of 2.15 kg (range = 
1.73–2.56 kg). The combination of the variables in the 
benchmark equation with MIRS and NIRS resulted in 
the most accurate equation, with a mean R2 of 0.68 
(range = 0.62–0.75) and an RMSE of 1.52 kg (range = 
1.18–1.76 kg).

Individual Breed Equations

Tables 4 and 5 present the fitting statistics of equa-
tions to predict the DMI of the individual breeds using 
equations 3 (MIRS wavelengths, MY, fat percentage, 
protein percentage, BW, SOL, and parity) and 5 (NIRS 
wavelengths, MY, fat percentage, protein percentage, 
BW, SOL, and parity), respectively. The DMI of HF 
animals could be predicted when JE × HF animals 
were used to develop equations, and vice versa when 
HF animals were used to develop the equations.

DISCUSSION

The major obstacle to genetic improvements in feed 
efficiency of dairy cows is routine access to individual 
animal feed intake data from commercial dairy farms 
(Berry et al., 2014; Connor, 2015). Thus, despite known T
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genetic variation for feed intake and efficiency in graz-
ing dairy cows (Berry et al., 2007; Hurley et al., 2017), 
progress in including the trait in breeding indexes has 
been limited. There is an interest in the development 
of technologies to estimate the feed intake of a large 
population of dairy animals to derive breeding values 
for feed efficiency (Berry and Crowley, 2013). The 
analysis of feces and milk using infrared reflectance 
spectroscopy to predict DMI has been previously re-
searched (Tran et al., 2010; Shetty et al., 2017; Dórea 
et al., 2018). Both approaches offer the potential to 
collect phenotypes relating to feed intake across a large 
population of animals. However, a direct comparison 
of the 2 methods, either as prediction methods in their 
own right or in combination with other variables, has 
not been conducted.

Validation Methodology

The majority of previous NIRS and MIRS studies 
developed equations to predict DMI by randomly se-
lecting a proportion of either cows or samples from the 
total data set for training purposes and using remain-
ing samples for validation (Boval et al., 2004; Shetty et 
al., 2017; Wallén et al., 2018). Although demonstrating 
the potential of the technologies, the results are not 
necessarily a true representation of the predictive accu-
racy of equations (Dórea et al., 2018). This study com-
pared the effects of validating equations both within 
herd (with cows from within the same experiment) and 
across herds (using differing experiments), providing 
greater confidence about the true applicability of the 
equations.

Evaluation of Equations to Predict DMI

The fitting statistics of all equations were inferior 
upon across-herds validation compared with within-
herd validation. This is not surprising because the 
prediction of DMI across differing environments is a 
very difficult task (Pulina et al., 2013). Similar intakes 
can be achieved from different underlying principles 
(McParland and Berry, 2016). The strong prediction of 
DMI by the benchmark equation is supported by previ-
ous studies using similar variables (Vazquez and Smith, 
2000; NRC, 2001; McCarthy et al., 2014). The energy 
sinks milk production and BW are positively correlated 
with DMI on genetic (Manzanilla Pech et al., 2014) and 
phenotypic (Prendiville et al., 2009) levels. This strong 
relationship is linked to the cow’s inherent desire to 
satisfy its energetic demands for milk production and 
maintenance requirements (Holmes et al., 2002). For 
the purpose of this study, the benchmark equation was 
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used as a standard with which equations incorporating 
infrared spectroscopy could be compared.

Corresponding to the results of Dórea et al. (2018), 
who examined MIRS of milk from TMR-fed Holsteins, 
using MIRS alone to predict DMI led to inferior fitting 
statistics compared with the benchmark equation upon 
across-herds validation, although the fitting statistics 
themselves were superior to those of Dórea et al. (2018; 
R2 = 0.17). The differences observed may be due to the 
use of differing wavelength regions, differing methods 
of analysis, and the diet offered to the cows. The milk 
of grass-fed cows has a different profile for fatty acids 
compared with that of TMR-fed cows (White et al., 
2001; O’Callaghan et al., 2016). Shetty et al. (2017) 
postulated that the fatty acid profile of milk from graz-
ing dairy cows may result in more accurate predictions 
of DMI compared with that of milk from TMR-fed 
cows. Another study by McParland et al. (2012), using 
MIRS analysis of milk, reported an R2 of 0.08 for en-
ergy intake. The equations were developed on Holstein 
cows offered a TMR diet and validated on a separate 
herd of HF grazing dairy cows. In contrast, the herds 
used to validate equations in this study comprised cows 
of similar genetics offered broadly similar diets. McPar-
land et al. (2012) hypothesized that the dissimilarity in 
the spectral profiles between the 2 production systems 
resulted in the poor validation. Similarly, a study by 
Johnson et al. (2017), using NIRS analysis of feces from 
feedlot-housed beef cattle, stated that the large dis-
similarity in the spectral profiles of the differing experi-
ments may have resulted in the poor accuracy (R2 < 

0.05). In this study, the experimental research herds had 
quite similar spectral profiles for both MIRS (Figure 
1) and NIRS (Figure 2), which may have contributed 
to more accurate predictions. Nevertheless, the fitting 
statistics of both the MIRS and NIRS equations when 
used individually to predict DMI were poor. Robust 
prediction models require sufficient quantities of spec-
tral variation relevant to the environmental conditions 
upon which the equations are to be used (McParland 
and Berry, 2016; Johnson et al., 2017). This hypothesis 
is supported by the study of Tran et al. (2010), who 
developed a robust fecal NIRS equation (R2 = 0.67) us-
ing commercial dairy farms from 27 locations across 2 
countries. Similarly, in other fields in agriculture where 
infrared reflectance spectroscopy is routinely used, the 
more samples and the more diverse the profile of these 
samples, the greater the aptness of the developed equa-
tions for use on external data sets (Burns et al., 2010; 
Soyeurt et al., 2011).

The improvement in the fitting statistics when MIRS 
was combined with the variables in the benchmark 
equation agrees with previous studies using MIRS and 
animal traits (Shetty et al., 2017; Dórea et al., 2018; 
Wallén et al., 2018). Mid-infrared reflectance spectros-
copy provided additional information relating to DMI 
moderately surpassing the benchmark equation. The 
majority of the observed predictability would appear to 
be due to its ability to predict fat and protein content 
in the milk. The inclusion of fat and protein content 
in the equation including MY, BW, SOL, and parity 
led to a 0.08 increase in the R2 (results not shown). 

Table 4. Fitting statistics1 of breed equations to predict DMI using mid-infrared reflectance spectroscopy analysis of milk, milk yield, fat 
percentage, protein percentage, BW, parity, and stage of lactation

Calibration2

Cross-validation

 Validation

Validation

No. RMSE R2 No. Bias RMSE Slope (SE) RPD R2

JE × HF 259 1.38 0.80 HF 262 −0.36 1.68 0.90* (0.04) 1.88 0.72
HF 262 1.45 0.78 JE × HF 259 0.002 1.61 0.98 (0.03) 1.89 0.72
1RMSE = root mean squared error; R2 = coefficient of determination between true and predicted values; RPD = ratio performance deviation.
2HF = Holstein Friesian; JE × HF = Holstein Friesian × Jersey cross-breed.
*Slope test (b ≠ 1; P < 0.05).

Table 5. Fitting statistics1 of breed equations to predict DMI using near-infrared reflectance spectroscopy analysis of feces, milk yield, fat 
percentage, protein percentage, BW, parity, and stage of lactation

Calibration2

Cross-validation

 Validation

Validation

No. RMSE R2 No. Bias RMSE Slope (SE) RPD R2

JE × HF 259 1.38 0.79 HF 262 −0.17 1.69 0.91* (0.04) 1.87 0.71
HF 262 1.48 0.78 JE × HF 259 0.17 1.48 1.05 (0.04) 2.06 0.77
1RMSE = root mean squared error; R2 = coefficient of determination between true and predicted values; RPD = ratio performance deviation.
2HF = Holstein Friesian; JE × HF = Holstein Friesian × Jersey cross-breed.
*Slope test (b ≠ 1; P < 0.05).
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There was an additional 0.04 increase in the R2 when 
MIRS was combined with the aforementioned variables. 
Removing fat and protein content from this equation 
(equation 3) did not affect prediction accuracy (results 
not shown). Mid-infrared reflectance spectroscopy 
analysis can provide information on detailed fatty acids 
(Soyeurt et al., 2011) and proteins (McDermott et al., 
2016), opposed to the nonspecific versions of fat and 
protein used in the benchmark equation. This may be 
a reason for the additional variation on DMI explained 
by MIRS within the current study. Shetty et al. (2017) 
reported no advantage for DMI prediction of including 
MIRS compared with including milk fat and protein 
content in a prediction model based on cows offered a 
TMR diet. However, Dórea et al. (2018) found signifi-
cant improvements in DMI prediction when artificial 
neural networks were implemented on the spectra of 
milk from TMR-fed cows, suggesting a possible non-
linear relationship between DMI and the milk spectra.

There was no advantage for DMI prediction when 
NIRS was combined with the variables in the bench-
mark equation. Previous authors have noted that NIRS 
analysis of feces can provide information on the digest-
ibility of the diet as well as the physiological state of the 

animal (Decruyenaere et al., 2009; Dixon and Coates, 
2009). However, when known animal energy sinks and 
status traits are accounted for, additional contribution 
to DMI prediction would appear nonevident. It should 
be highlighted that the combination of both NIRS and 
MIRS with the benchmark equation led to the most 
accurate equation, indicating that both methods of 
analysis complement one another when predicting DMI. 
Specific fecal NIRS wavelength regions associated with 
the by-products of feed digestion may become relevant 
predictors of DMI only when the corresponding milk 
MIRS wavelength regions produced from the digestion 
of this feed are present.

Similar to the results of McParland et al. (2014), the 
RPD for all the equations fitted in the current study 
were lower than the recommended threshold of 2.4 
for the purpose of rough screening proposed by Wil-
liams (2005). This recommendation is for predicting 
parameters that have a precise gold standard measure 
as a reference value. Hence, the use of this guideline 
on equations to predict DMI, which is regulated by 
complex natural processes (Holmes et al., 2002; Cole-
man, 2005; Pulina et al., 2013), is debatable (Johnson 
et al., 2017). More so, because DMI in grazing animals 

Figure 1. First 2 principal components of spectral data of milk showing experiments 1 (green triangles), 2 (red dashes), 3 (blue diamonds), 
and 4 (purple circles). Principal component 1 explained 79% of spectral variation, and principal component 2 explained 9% of spectral variation.
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is estimated using the n-alkane technique and not mea-
sured directly, a prediction accuracy of near unity is 
not expected (McParland and Berry, 2016).

Prediction of the Individual Breeds

Despite having slightly differing spectral profiles 
(Figure 3), HF animals could be used successfully to 
predict the DMI of JE × HF animals using MIRS in 
combination with the variables in the benchmark equa-
tion and vice versa with JE × HF animals. Shetty et 
al. (2017) was also able to predict the DMI of pure 
Jersey cows with the milk spectra of Holstein animals 
in combination with MY and BW, although the fitting 
statistics reported were lesser compared with the cur-
rent study. The mean breed proportion of the JE × HF 
animals within the current study was 47% Jersey and 
51% HF, which may have led to an increase in the ac-
curacy upon validation. Holstein-Friesian animals could 
also be used successfully to predict the DMI of JE × 
HF animals using NIRS in combination with the vari-
ables in the benchmark equation, and vice versa with 
JE × HF animals. The spectral profiles of the feces of 
both genotypes were similar (Figure 4). Furthermore, 

Beecher et al. (2014) noted that there was no difference 
in the digestibility and rumen microbial populations 
between the breeds. The same study also showed that 
JE × HF animals are lighter and have a significantly 
different gastrointestinal tract weight compared with 
HF animals, resulting in differences in total DMI and 
DMI per unit of BW reported by Prendiville et al. 
(2009) and Coffey et al. (2017). However, there were 
only minor discrepancies in the bias of predictions.

Application of Equations

A further consideration is the commercial application 
of the equations. Methods of predicting DMI for the 
purposes of improving feed efficiency must be easily 
deployed on commercial dairy farms. The majority of 
the variables in the benchmark equation are readily 
available, with the possible exception of BW. Never-
theless, many commercial dairy farms have access to 
weighing scales for the purpose of weighing growing 
replacement animals. Because MIRS is currently used 
to measure the milk constituents of milk-recorded ani-
mals (McParland et al., 2014; Shetty et al., 2017), it is 
ideally suited to collect phenotypes of DMI. However, 

Figure 2. First 2 principal components of spectral data of feces showing experiments 1 (green triangles), 2 (red dashes), 3 (blue diamonds), 
and 4 (purple circles). Principal component 1 explained 92% of spectral variation, and principal component 2 explained 7% of spectral variation.



LAHART ET AL.

Journal of Dairy Science Vol. 102 No. 10, 2019

NIRS analysis used within this study is labor intensive 
because the fecal samples used were a composite of sev-
eral subsamples that were subsequently bulked, dried, 
and milled before analysis, suggesting that the combi-
nation of the MIRS wavelengths with the variables in 
the benchmark equation is the most suitable equation 
for predicting the DMI of grazing dairy cows.

It is acknowledged that the developed equations do 
not capture all of the variation in DMI. Variables such 
as pregrazing herbage mass and herbage allowance also 
influence DMI in grazing dairy cows (Kennedy et al., 
2008; Muñoz et al., 2016). Further improvements to 
the predictive accuracy of DMI equations may be real-
ized where accurate data on such variables are used in 
prediction models (O’Neill et al., 2013a,b). However, 
these data are not readily available on commercial 
dairy farms. Additionally, highly accurate phenotypes 
in absolute terms are not necessarily required to make 
genetic progress for a trait once sufficient quantities 
of phenotypic records are available (Calus et al., 2013; 
McParland and Berry, 2016). Given that half of the 
Irish dairy cow population is milk recorded annually 
(Roche et al., 2017), equations developed in this study 

offer potential to collect phenotypes of DMI from a 
large population of animals for use in breeding for ge-
netic improvements in feed efficiency.

CONCLUSIONS

The equations developed in this study have the ca-
pacity to predict DMI of lactating dairy cows under 
grazing conditions. The use of MIRS analysis of milk 
in combination with known animal energy sinks and 
status traits is proposed as the most suitable method 
for the collection of phenotypic feed intake data. In 
addition, the DMI of HF animals could be predicted 
when JE × HF animals were used to develop equations 
and vice versa when HF animals were used to develop 
the equations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding by the 
Irish Government under the National Development 
Plan 2007-2013 through the Department of Agricul-
ture, Food and the Marine (Dublin, Ireland) Research 

Figure 3. First 2 principal components of spectral data of milk showing Holstein-Friesian (blue triangles) and Holstein-Friesian × Jersey 
crossbred (red circles) cows. Principal component 1 explained 76% of spectral variation, and principal component 2 explained 12% of spectral 
variation.



Journal of Dairy Science Vol. 102 No. 10, 2019

DRY MATTER INTAKE AND INFRARED REFLECTANCE SPECTROSCOPY ANALYSIS

Stimulus Fund 13/S/496 RAPIDFEED. The diligent 
work of the farm staff and students on the 4 research 
farms in collecting the data used in the current study is 
also acknowledged.

REFERENCES

Beecher, M., F. Buckley, S. M. Waters, T. M. Boland, D. Enriquez-
Hidalgo, M. H. Deighton, M. O’Donovan, and E. Lewis. 2014. Gas-
trointestinal tract size, total-tract digestibility, and rumen micro-
flora in different dairy cow genotypes. J. Dairy Sci. 97:3906–3917.

Berry, D. P., B. Horan, M. O’Donovan, F. Buckley, E. Kennedy, M. 
McEvoy, and P. Dillon. 2007. Genetics of grass dry matter intake, 
energy balance, and digestibility in grazing Irish dairy cows. J. 
Dairy Sci. 90:4835–4845.

Berry, D. P., M. P. Coffey, J. E. Pryce, Y. de Haas, P. Løvendahl, N. 
Krattenmacher, J. J. Crowley, Z. Wang, D. Spurlock, K. Weigel, 
K. Macdonald, and R. F. Veerkamp. 2014. International genetic 
evaluations for feed intake in dairy cattle through the collation of 
data from multiple sources. J. Dairy Sci. 97:3894–3905.

Berry, D. P., and J. J. Crowley. 2013. Genetics of feed efficiency in 
dairy and beef cattle. J. Anim. Sci. 91:1594–1613.

Boval, M., D. B. Coates, P. Lecomte, V. Decruyenaere, and H. Ar-
chimède. 2004. Faecal near infrared reflectance spectroscopy 
(NIRS) to assess chemical composition, in vivo digestibility and 
intake of tropical grass by Creole cattle. Anim. Feed Sci. Technol. 
114:19–29.

Burns, G., T. Gilliland, D. McGilloway, M. O’Donovan, E. Lewis, N. 
Blount, and P. O’Kiely. 2010. Using NIRS to predict composition 
characteristics of Lolium perenne L. cultivars. Adv. Anim. Biosci. 
1:321.

Calus, M. P., Y. De Haas, M. Pszczola, and R. Veerkamp. 2013. Pre-
dicted accuracy of and response to genomic selection for new traits 
in dairy cattle. Animal 7:183–191.

Coffey, E. L., L. Delaby, S. Fitzgerald, N. Galvin, K. M. Pierce, and 
B. Horan. 2017. Effect of stocking rate and animal genotype on 
dry matter intake, milk production, body weight, and body con-
dition score in spring-calving, grass-fed dairy cows. J. Dairy Sci. 
100:7556–7568.

Coleman, S. W. 2005. Predicting forage intake by grazing ruminants. 
Pages 72–90 in Proc. 2005 Ruminant Nutrition Symposium, Flor-
ida. University of Florida Dairy Extension.

Connor, E. E. 2015. Invited review: Improving feed efficiency in dairy 
production: Challenges and possibilities. Animal 9:395–408.

Decruyenaere, V., P. Lecomte, C. Demarquilly, J. Aufrere, P. Dardenne, 
D. Stilmant, and A. Buldgen. 2009. Evaluation of green forage in-
take and digestibility in ruminants using near infrared reflectance 
spectroscopy (NIRS): Developing a global calibration. Anim. Feed 
Sci. Technol. 148:138–156.

Department of Agriculture, Food and the Marine. 2017. AIM Bovine 
Statistics Report 2017. Department of Agriculture, Food and the 
Marine, Dublin, Ireland.

Derby, N. Getting correct results from PROC REG. Paper 270 in 
Proc. SAS Global Forum 2010, Seattle, WA. SAS Institute Inc., 
Cary, NC.

Figure 4. First 2 principal components of spectral data of feces showing Holstein-Friesian (blue triangles) and Holstein-Friesian × Jersey 
crossbred (red circles) cows. Principal component 1 explained 90% of spectral variation, and principal component 2 explained 9% of spectral 
variation.



LAHART ET AL.

Journal of Dairy Science Vol. 102 No. 10, 2019

Dillon, P., and G. Stakelum. 1989. Herbage and dosed alkanes as a 
grass management technique for dairy cows. Irish. J. Agric. Res. 
28:104. (Abstr.)

Dixon, R., and D. Coates. 2009. Review: Near infrared spectroscopy 
of faeces to evaluate the nutrition and physiology of herbivores. J 
Near Infr. Spectr. 17:1–31.

Dórea, J. R., G. Rosa, K. Weld, and L. Armentano. 2018. Mining data 
from milk infrared spectroscopy to improve feed intake predictions 
in lactating dairy cows. J. Dairy Sci. 101:5878–5889.

Holmes, C., I. Brookes, D. Garrick, D. Mackenzie, T. Parkinson, and 
G. Wilson. 2002. Milk Production from Pasture: Principles and 
Practices. Massey University, Palmerston North, New Zealand.

Hurley, A. M., N. López-Villalobos, S. McParland, E. Lewis, E. Ken-
nedy, M. O’Donovan, J. L. Burke, and D. P. Berry. 2017. Genet-
ics of alternative definitions of feed efficiency in grazing lactating 
dairy cows. J. Dairy Sci. 100:5501–5514.

Johnson, J. R., G. E. Carstens, S. D. Prince, K. H. Ominski, K. M. 
Wittenberg, M. Undi, T. D. A. Forbes, A. N. Hafla, D. R. Tolle-
son, and J. A. Basarab. 2017. Application of fecal near-infrared 
reflectance spectroscopy profiling for the prediction of diet nutri-
tional characteristics and voluntary intake in beef cattle. J. Anim. 
Sci. 95:447–454.

Kennedy, E., L. Delaby, B. Horan, J. Roche, and E. Lewis. 2015. Dura-
tion is important in the effect of pasture allowance restriction on 
subsequent milk production, in early lactation. Pages 110−112 in 
Grassland Science in Europe, Vol. 20—Grassland and Forages in 
High Output Dairy Farming Systems. European Grassland Federa-
tion, Wageningen, the Netherlands.

Kennedy, E., M. O’Donovan, L. Delaby, and F. P. O’Mara. 2008. Ef-
fect of herbage allowance and concentrate supplementation on dry 
matter intake, milk production and energy balance of early lactat-
ing dairy cows. Livest. Sci. 117:275–286.

Manzanilla Pech, C. I., R. Veerkamp, M. Calus, R. Zom, A. van Kneg-
sel, J. Pryce, and Y. De Haas. 2014. Genetic parameters across 
lactation for feed intake, fat-and protein-corrected milk, and live-
weight in first-parity Holstein cattle. J. Dairy Sci. 97:5851–5862.

Mayes, R., C. Lamb, and P. M. Colgrove. 1986. The use of dosed and 
herbage n-alkanes as markers for the determination of herbage 
intake. J. Agric. Sci. 107:161–170.

McCarthy, B., M. Dineen, C. Guy, F. Coughlan, and T. Gilliland. The 
effect of tetraploid and diploid perennial ryegrass swards sown 
with and without clover on milk and herbage production. Pages 
259−261 in Grassland Science in Europe, Vol. 20—Grassland and 
Forages in High Output Dairy Farming Systems. European Grass-
land Federation, Wageningen, the Netherlands.

McCarthy, J., B. McCarthy, B. Horan, K. Pierce, N. Galvin, A. Bren-
nan, and L. Delaby. 2014. Effect of stocking rate and calving date 
on dry matter intake, milk production, body weight, and body 
condition score in spring-calving, grass-fed dairy cows. J. Dairy 
Sci. 97:1693–1706.

McDermott, A., G. Visentin, M. De Marchi, D. Berry, M. Fenelon, 
P. O’Connor, O. Kenny, and S. McParland. 2016. Prediction of 
individual milk proteins including free amino acids in bovine milk 
using mid-infrared spectroscopy and their correlations with milk 
processing characteristics. J. Dairy Sci. 99:3171–3182.

McParland, S., G. Banos, B. McCarthy, E. Lewis, M. Coffey, B. 
O’Neill, M. O’Donovan, E. Wall, and D. Berry. 2012. Validation 
of mid-infrared spectrometry in milk for predicting body energy 
status in Holstein-Friesian cows. J. Dairy Sci. 95:7225–7235.

McParland, S., G. Banos, E. Wall, M. P. Coffey, H. Soyeurt, R. F. 
Veerkamp, and D. P. Berry. 2011. The use of mid-infrared spec-
trometry to predict body energy status of Holstein cows. J. Dairy 
Sci. 94:3651–3661.

McParland, S., and D. P. Berry. 2016. The potential of Fourier trans-
form infrared spectroscopy of milk samples to predict energy in-
take and efficiency in dairy cows. J. Dairy Sci. 99:4056–4070.

McParland, S., E. Lewis, E. Kennedy, S. G. Moore, B. McCarthy, 
M. O’Donovan, S. T. Butler, J. E. Pryce, and D. P. Berry. 2014. 
Mid-infrared spectrometry of milk as a predictor of energy intake 
and efficiency in lactating dairy cows. J. Dairy Sci. 97:5863–5871.

Muñoz, C., P. A. Letelier, E. M. Ungerfeld, J. M. Morales, S. Hube, 
and L. A. Pérez-Prieto. 2016. Effects of pregrazing herbage mass 
in late spring on enteric methane emissions, dry matter intake, and 
milk production of dairy cows. J. Dairy Sci. 99:7945–7955.

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Nat. 
Acad. Press, Washington, DC.

O’Callaghan, T. F., D. Hennessy, S. McAuliffe, K. N. Kilcawley, M. 
O’Donovan, P. Dillon, R. P. Ross, and C. Stanton. 2016. Effect of 
pasture versus indoor feeding systems on raw milk composition 
and quality over an entire lactation. J. Dairy Sci. 99:9424–9440.

O’Neill, B., E. Lewis, M. O’Donovan, L. Shalloo, N. Galvin, F. Mul-
ligan, T. Boland, and R. Delagarde. 2013a. Predicting grass dry 
matter intake, milk yield and milk fat and protein yield of spring 
calving grazing dairy cows during the grazing season. Animal 
7:1379–1389.

O’Neill, B. F., E. Lewis, M. O’Donovan, L. Shalloo, F. J. Mulligan, T. 
M. Boland, and R. Delagarde. 2013b. Evaluation of the GrazeIn 
model of grass dry-matter intake and milk production prediction 
for dairy cows in temperate grass-based production systems. 2—
Animal characteristics. Grass Forage Sci. 68:524–536.

O’Sullivan, M., B. Horan, K. M. Pierce, S. McParland, K. O’Sullivan, 
and F. Buckley. 2019. Milk production of Holstein-Friesian cows 
of divergent Economic Breeding Index evaluated under seasonal 
pasture-based management. J. Dairy Sci. 102:2560–2577.

Prendiville, R., K. M. Pierce, and F. Buckley. 2009. An evaluation 
of production efficiencies among lactating Holstein-Friesian, Jer-
sey, and Jersey × Holstein-Friesian cows at pasture. J. Dairy Sci. 
92:6176–6185.

Pulina, G., M. Avondo, G. Molle, A. H. D. Francesconi, A. S. Atzori, 
and A. Cannas. 2013. Invited review: Models for estimating feed 
intake in small ruminants. Rev. Bras. Zootec. 42:675–690.

Roche, J. R., D. Berry, A. Bryant, C. Burke, S. Butler, P. Dillon, D. 
Donaghy, B. Horan, K. Macdonald, and K. Macmillan. 2017. A 
100-year review: A century of change in temperate grazing dairy 
systems. J. Dairy Sci. 100:10189–10233.

Schori, F., and A. Münger. 2014. Intake, feed conversion efficiency and 
grazing behaviour of two Holstein cow strains in a pasture-based 
production system under organic farming in Switzerland. Org. Ag-
ric. 4:175–186.

Shetty, N., P. Løvendahl, M. S. Lund, and A. J. Buitenhuis. 2017. Pre-
diction and validation of residual feed intake and dry matter intake 
in Danish lactating dairy cows using mid-infrared spectroscopy of 
milk. J. Dairy Sci. 100:253–264.

Soyeurt, H., F. Dehareng, N. Gengler, S. McParland, E. Wall, D. P. 
Berry, M. Coffey, and P. Dardenne. 2011. Mid-infrared prediction 
of bovine milk fatty acids across multiple breeds, production sys-
tems, and countries. J. Dairy Sci. 94:1657–1667.

Tran, H., P. Salgado, E. Tillard, P. Dardenne, X. T. Nguyen, and 
P. Lecomte. 2010. “Global” and “local” predictions of dairy diet 
nutritional quality using near infrared reflectance spectroscopy. J. 
Dairy Sci. 93:4961–4975.

Vazquez, O. P., and T. Smith. 2000. Factors affecting pasture intake 
and total dry matter intake in grazing dairy cows. J. Dairy Sci. 
83:2301–2309.

Wallén, S. E., E. Prestløkken, T. Meuwissen, S. McParland, and D. 
Berry. 2018. Milk mid-infrared spectral data as a tool to predict 
feed intake in lactating Norwegian Red dairy cows. J. Dairy Sci. 
101:6232–6243.

White, S. L., J. A. Bertrand, M. R. Wade, S. P. Washburn, J. T. Green 
Jr., and T. C. Jenkins. 2001. Comparison of fatty acid content of 
milk from Jersey and Holstein cows consuming pasture or a total 
mixed ration. J. Dairy Sci. 84:2295–2301.

Williams, P. 1987. Qualitative Applications of Near Infrared Reflec-
tance Spectroscopy. American Association of Cereal Chemists, 
Eagan, MN. 

Williams, P. 2005. Near-Infrared Technology—Getting the Best Out of 
Light. PDK Projects Inc., Nanaimo, BC, Canada.


	Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis
	INTRODUCTION
	MATERIALS AND METHODS
	Measurements
	Treatment of Spectral Data
	Data Editing
	Prediction Equations

	RESULTS
	Within-Herd Validation
	Across-Herds Validation
	Individual Breed Equations

	DISCUSSION
	Validation Methodology
	Evaluation of Equations to Predict DMI
	Prediction of the Individual Breeds
	Application of Equations

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


