218 research outputs found

    Unfinished Revolution

    Get PDF

    Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change : UNEP Environmental Effects Assessment Panel, Update 2021

    Get PDF
    The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.Peer reviewe

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol

    Get PDF
    There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors. UV radiation, climate change, and plastic pollution are closely interlinked. Existing studies on the persistence of plastics do not fully consider these linkages, challenging global assessments of plastic dispersal, persistence, and weathering. Recently, an Intergovernmental Negotiating Committee was tasked with developing an international binding agreement to end plastic pollution. In response, the UNEP Environmental Effects Assessment Panel assessed effects of UV radiation and interacting climate change factors on plastics, focusing on the durability of products as well as the production and dispersal of micro- and nano-plastic pollutants in the environment

    Atopic dermatitis : a cutaneous or systemic disease? The search for answers in the history of Dermatology

    Get PDF
    A dermatite atópica é doença inflamatória cutânea associada à atopia, predisposição a produzir resposta IgE a alérgenos ambientais, constituindo uma das manifestações das doenças atópicas, junto com a asma e a rinite alérgica. A dermatite atópica é caracterizada por episódios recorrentes de eczema associado a prurido, acometendo superfície cutânea geneticamente alterada, induzindo, por fenômenos imunológicos, a presença de inflamação. Trata-se de doença multifatorial, com enfoque nas alterações sistêmicas e alérgicas ou nas manifestações cutâneas, de acordo com diferentes visões da doença. A conceituação da dermatite atópica é importante, porque a conduta terapêutica pode variar segundo essas duas formas diferentes de analisá-la. Autores modernos discutem extensivamente esses aspectos sem, contudo, alcançar uma conclusão sobre a dermatite atópica como doença sistêmica ou cutânea. A procura dos conceitos sobre a doença, desde os primeiros relatos, associada à evolução do pensamento na dermatologia, poderia esclarecer a origem dessas dúvidas. Uma análise histórica demonstra que a dermatite atópica tem seus conceitos atuais oriundos dos estudos de diversos pensadores, que, em diferentes momentos históricos, descreveram a doença, e que muito do que acreditamos atualmente tem, nesses escritos, seus fundamentos.Atopic dermatitis is an inflammatory disease associated to atopy, which is a predisposition to produce an IgE response to environmental allergens and considered one of the manifestations of the atopic diseases, including asthma and allergic rhinitis. Atopic dermatitis is characterized by recurrent eczema flares, associated to pruritus, affecting a genetically disrupted skin surface, inducing, by immunological phenomena, the onset of inflammation. It is a multifactorial disease, with an emphasis on systemic and allergic alterations or skin manifestations, according to different concepts. The definition of atopic dermatitis is important, since its management may vary according to these two different points of view. Modern authors have extensively discussed these concepts, though with no conclusion as to its nature - systemic or cutaneous disease. The search for concepts about the disease, since its first descriptions, associated to the evolution of the dermatology rationale through history, may help understand the origin of these doubts. A historical analysis demonstrates that the currently accepted concepts of atopic dermatitis have their background from different researchers, who, at different historical moments, described the disease, and a great part of our beliefs about atopic dermatitis are related to these ancient writings

    The Coldest War : Russia's Game In China

    No full text
    17cm;113ha
    corecore