3,251 research outputs found

    Rational Hausdorff Divisors: a New approach to the Approximate Parametrization of Curves

    Get PDF
    In this paper we introduce the notion of rational Hausdorff divisor, we analyze the dimension and irreducibility of its associated linear system of curves, and we prove that all irreducible real curves belonging to the linear system are rational and are at finite Hausdorff distance among them. As a consequence, we provide a projective linear subspace where all (irreducible) elements are solutions to the approximate parametrization problem for a given algebraic plane curve. Furthermore, we identify the linear system with a plane curve that is shown to be rational and we develop algorithms to parametrize it analyzing its fields of parametrization. Therefore, we present a generic answer to the approximate parametrization problem. In addition, we introduce the notion of Hausdorff curve, and we prove that every irreducible Hausdorff curve can always be parametrized with a generic rational parametrization having coefficients depending on as many parameters as the degree of the input curve

    The Relation Between Offset and Conchoid Constructions

    Full text link
    The one-sided offset surface Fd of a given surface F is, roughly speaking, obtained by shifting the tangent planes of F in direction of its oriented normal vector. The conchoid surface Gd of a given surface G is roughly speaking obtained by increasing the distance of G to a fixed reference point O by d. Whereas the offset operation is well known and implemented in most CAD-software systems, the conchoid operation is less known, although already mentioned by the ancient Greeks, and recently studied by some authors. These two operations are algebraic and create new objects from given input objects. There is a surprisingly simple relation between the offset and the conchoid operation. As derived there exists a rational bijective quadratic map which transforms a given surface F and its offset surfaces Fd to a surface G and its conchoidal surface Gd, and vice versa. Geometric properties of this map are studied and illustrated at hand of some complete examples. Furthermore rational universal parameterizations for offsets and conchoid surfaces are provided

    Partial Degree Formulae for Plane Offset Curves

    Get PDF
    In this paper we present several formulae for computing the partial degrees of the defining polynomial of the offset curve to an irreducible affine plane curve given implicitly, and we see how these formulae particularize to the case of rational curves. In addition, we present a formula for computing the degree w.r.t the distance variable.Comment: 24 pages, no figure

    First Steps Towards Radical Parametrization of Algebraic Surfaces

    Get PDF
    We introduce the notion of radical parametrization of a surface, and we provide algorithms to compute such type of parametrizations for families of surfaces, like: Fermat surfaces, surfaces with a high multiplicity (at least the degree minus 4) singularity, all irreducible surfaces of degree at most 5, all irreducible singular surfaces of degree 6, and surfaces containing a pencil of low-genus curves. In addition, we prove that radical parametrizations are preserved under certain type of geometric constructions that include offset and conchoids.Comment: 31 pages, 7 color figures. v2: added another case of genus

    Rational parametrization of conchoids to algebraic curves

    Get PDF
    We study the rationality of each of the components of the conchoid to an irreducible algebraic affine plane curve, excluding the trivial cases of the lines through the focus and the circle centered at the focus and radius the distance involved in the conchoid. We prove that conchoids having all their components rational can only be generated by rational curves. Moreover, we show that reducible conchoids to rational curves have always their two components rational. In addition, we prove that the rationality of the conchoid component, to a rational curve, does depend on the base curve and on the focus but not on the distance. As a consequence, we provide an algorithm that analyzes the rationality of all the components of the conchoid and, in the affirmative case, parametrizes them. The algorithm only uses a proper parametrization of the base curve and the focus and, hence, does not require the previous computation of the conchoid. As a corollary, we show that the conchoid to the irreducible conics, with conchoid-focus on the conic, are rational and we give parametrizations. In particular we parametrize the Limaçons of Pascal. We also parametrize the conchoids of Nicomedes. Finally, we show how to find the foci from where the conchoid is rational or with two rational components
    • …
    corecore