87 research outputs found
The Dynamical Evolution of the Pleiades
We present the results of a numerical simulation of the history and future
development of the Pleiades. This study builds on our previous one that
established statistically the present-day structure of this system. Our
simulation begins just after molecular cloud gas has been expelled by the
embedded stars. We then follow, using an N body code, the stellar dynamical
evolution of the cluster to the present and beyond. Our initial state is that
which evolves, over the 125 Myr age of the cluster, to a configuration most
closely matching the current one.
We find that the original cluster, newly stripped of gas, already had a
virial radius of 4 pc. This configuration was larger than most observed,
embedded clusters. Over time, the cluster expanded further and the central
surface density fell by about a factor of two. We attribute both effects to the
liberation of energy from tightening binaries of short period. Indeed, the
original binary fraction was close to unity. The ancient Pleiades also had
significant mass segregation, which persists in the cluster today.
In the future, the central density of the Pleiades will continue to fall. For
the first few hundred Myr, the cluster as a whole will expand because of
dynamical heating by binaries. The expansion process is aided by mass loss
through stellar evolution, which weakens the system's gravitational binding. At
later times, the Galactic tidal field begins to heavily deplete the cluster
mass. It is believed that most open clusters are eventually destroyed by close
passage of a giant molecular cloud. Barring that eventuality, the density
falloff will continue for as long as 1 Gyr, by which time most of the cluster
mass will have been tidally stripped away by the Galactic field.Comment: 45 pages, 13 figures, 2 tables; Accepted for publication in MNRA
An uncertainty principle for star formation - I. Why galactic star formation relations break down below a certain spatial scale
Galactic scaling relations between the (surface densities of) the gas mass and the star formation (SF) rate are known to develop substantial scatter or even change form when considered below a certain spatial scale. We quantify how this behaviour should be expected due to the incomplete statistical sampling of independent star-forming regions. Other included limiting factors are the incomplete sampling of SF tracers from the stellar initial mass function and the spatial drift between gas and stars. We present a simple uncertainty principle for SF, which can be used to predict and interpret the failure of galactic SF relations on small spatial scales. This uncertainty principle explains how the scatter of SF relations depends on the spatial scale and predicts a scale-dependent bias of the gas depletion time-scale when centring an aperture on gas or SF tracer peaks. We show how the scatter and bias are sensitive to the physical size and time-scales involved in the SF process (such as its duration or the molecular cloud lifetime), and illustrate how our formalism provides a powerful tool to constrain these largely unknown quantities. Thanks to its general form, the uncertainty principle can also be applied to other astrophysical systems, e.g. addressing the time evolution of star-forming cores, protoplanetary discs or galaxies and their nuclei
Exocrine Proteins Including Trypsin(ogen) as a Key Biomarker in Type 1 Diabetes
Objective
Proteomic profiling can identify useful biomarkers. Monozygotic(MZ) twins, discordant for a condition represent an ideal test population. We aimed to investigate and validate proteomic profiling in twins with type 1 diabetes and in other well characterised cohorts.
Research Design and Methods
A broad, multiplex analysis of 4068 proteins in sera from MZ twins concordant (n=43) and discordant for type 1 diabetes (n=27) identified major differences which were subsequently validated by a trypsin(ogen) assay in MZ pairs concordant (n=39) and discordant (n=42) for type 1 diabetes, individuals at-risk (n=195) and with type 1 diabetes (n=990), as well as with non-insulin requiring adult-onset diabetes diagnosed as either autoimmune (n=96) or type 2 (n=291).
Results
Proteomic analysis identified major differences between exocrine enzyme levels in discordant MZ twin pairs despite strong correlation between twins, whether concordant or discordant for type 1 diabetes (p
Conclusions
Type 1 diabetes is associated with altered exocrine function, even before onset. Twin data suggest roles for genetic and non-genetically determined factors. Exocrine/endocrine interactions are important under-investigated factors in type 1 diabetes.</p
The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone
The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at pc spatial and km s spectral resolution. In this paper, we present data on the inner pc () between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J,K) = (1,1) - (6,6) to derive column density, kinematics, opacity and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of km s and extended regions of optically thick () emission. Two components in kinetic temperature are detected at K and K, both being significantly hotter than dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. (2015) that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density and line width. We find heating rates between and K Myr along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics and the observation of an evolutionary sequence of increasing star formation activity with orbital phase
STAT2 Mediates Innate Immunity to Dengue Virus in the Absence of STAT1 via the Type I Interferon Receptor
Dengue virus (DENV) is a mosquito-borne flavivirus, and symptoms of infection range from asymptomatic to the severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). High viral loads correlate with disease severity, and both type I & II interferons (IFNs) are crucial for controlling viral replication. We have previously reported that signal transducer and activator of transcription (STAT) 1-deficient mice are resistant to DENV-induced disease, but little is known about this STAT1-independent mechanism of protection. To determine the molecular basis of the STAT1-independent pathway, mice lacking STAT1, STAT2, or both STAT1 and STAT2 were infected with a virulent mouse-adapted strain of DENV2. In the first 72 hours of infection, the single-deficient mice lacking STAT1 or STAT2 possessed 50–100 fold higher levels of viral RNA than wild type mice in the serum, spleen, and other visceral tissues, but remained resistant to DENV-induced death. In contrast, the double-deficient mice exhibited the early death phenotype previously observed in type I and II IFN receptor knockout mice (AG129), indicating that STAT2 is the mediator of the STAT1-independent host defense mechanism. Further studies demonstrated that this STAT2-dependent STAT1-independent mechanism requires the type I IFN receptor, and contributes to the autocrine amplification of type I IFN expression. Examination of gene expression in the spleen and bone marrow-derived macrophages following DENV infection revealed STAT2-dependent pathways can induce the transcription of a subset of interferon stimulated genes even in the absence of STAT1. Collectively, these results help elucidate the nature of the poorly understood STAT1-independent host defense mechanism against viruses by identifying a functional type I IFN/STAT2 signaling pathway following DENV infection in vivo
The same frequency of planets inside and outside open clusters of stars
Most stars and their planets form in open clusters. Over 95 per cent of such
clusters have stellar densities too low (less than a hundred stars per cubic
parsec) to withstand internal and external dynamical stresses and fall apart
within a few hundred million years. Older open clusters have survived by virtue
of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when
they formed. Such clusters represent a stellar environment very different from
the birthplace of the Sun and other planet-hosting field stars. So far more
than 800 planets have been found around Sun-like stars in the field. The field
planets are usually the size of Neptune or smaller. In contrast, only four
planets have been found orbiting stars in open clusters, all with masses
similar to or greater than that of Jupiter. Here we report observations of the
transits of two Sun-like stars by planets smaller than Neptune in the
billion-year-old open cluster NGC6811. This demonstrates that small planets can
form and survive in a dense cluster environment, and implies that the frequency
and properties of planets in open clusters are consistent with those of planets
around field stars in the Galaxy.Comment: 18 pages, 6 figures, 1 table (main text + supplementary information
An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history
The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift () with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun
MALT-45: a 7 mm survey of the southern Galaxy - I. Techniques and spectral line data
We present the first results from the MALT-45 (Millimetre Astronomer's Legacy Team-45 GHz) Galactic Plane survey. We have observed 5 square degrees (l = 330°–335°, b = ±0 ∘ . 5) for spectral lines in the 7 mm band (42–44 and 48–49 GHz), including CS (1–0), class I CH3OH masers in the 7(0,7)–6(1,6) A+ transition and SiO (1–0) v = 0, 1, 2, 3. MALT-45 is the first unbiased, large-scale, sensitive spectral line survey in this frequency range. In this paper, we present data from the survey as well as a few intriguing results; rigorous analyses of these science cases are reserved for future publications. Across the survey region, we detected 77 class I CH3OH masers, of which 58 are new detections, along with many sites of thermal and maser SiO emission and thermal CS. We found that 35 class I CH3OH masers were associated with the published locations of class II CH3OH, H2O and OH masers but 42 have no known masers within 60 arcsec. We compared the MALT-45 CS with NH3 (1,1) to reveal regions of CS depletion and high opacity, as well as evolved star-forming regions with a high ratio of CS to NH3. All SiO masers are new detections, and appear to be associated with evolved stars from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Generally, within SiO regions of multiple vibrational modes, the intensity decreases as v = 1, 2, 3, but there are a few exceptions where v = 2 is stronger than v = 1
The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline
We recently proposed that the star-forming potential of dense molecular clouds in the Central Molecular Zone (CMZ, i.e. the central few 100 pc) of the Milky Way is intimately linked to their orbital dynamics, potentially giving rise to an absolute-time sequence of star-forming clouds. In this paper, we present an orbital model for the gas stream(s) observed in the CMZ. The model is obtained by integrating orbits in the empirically constrained gravitational potential and represents a good fit (χ2red=2.0) to the observed position–velocity distribution of dense (n > several 103 cm-3) gas, reproducing all of its key properties. The orbit is also consistent with observational constraints not included in the fitting process, such as the 3D space velocities of Sgr B2 and the Arches and Quintuplet clusters. It differs from previous, parametric models in several respects: (1) the orbit is open rather than closed due to the extended mass distribution in the CMZ, (2) its orbital velocity (100–200 km s-1) is twice as high as in previous models, and (3) Sgr A* coincides with the focus of the (eccentric) orbit rather than being offset. Our orbital solution supports the recently proposed scenario in which the dust ridge between G0.253+0.016 (‘the Brick’) and Sgr B2 represents an absolute-time sequence of star-forming clouds, of which the condensation was triggered by the tidal compression during their most recent pericentre passage. We position the clouds on a common timeline and find that their pericentre passages occurred 0.30–0.74 Myr ago. Given their short free-fall times (tff ∼ 0.34 Myr), the quiescent cloud G0.253+0.016 and the vigorously star-forming complex Sgr B2 are separated by a single free-fall time of evolution, implying that star formation proceeds rapidly once collapse has been initiated. We provide the complete orbital solution, as well as several quantitative predictions of our model (e.g. proper motions and the positions of star formation ‘hotspots’). The paper is concluded with a discussion of the assumptions and possible caveats, as well as the position of the model in the Galactic context, highlighting its relation to large-scale gas accretion, the dynamics of the bar, the x2 orbital family, and the origin of the Arches and Quintuplet clusters
What controls star formation in the central 500 pc of the Galaxy?
The star formation rate (SFR) in the Central Molecular Zone (CMZ, i.e. the central 500 pc) of the Milky Way is lower by a factor of ≥10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. In this paper, we quantify which physical mechanisms could be responsible. On scales larger than the disc scaleheight, the low SFR is found to be consistent with episodic star formation due to secular instabilities or possibly variations of the gas inflow along the Galactic bar. The CMZ is marginally Toomre-stable when including gas and stars, but highly Toomre-stable when only accounting for the gas, indicating a low condensation rate of self-gravitating clouds. On small scales, we find that the SFR in the CMZ may be caused by an elevated critical density for star formation due to the high turbulent pressure. The existence of a universal density threshold for star formation is ruled out. The H I–H2 phase transition of hydrogen, the tidal field, a possible underproduction of massive stars due to a bottom-heavy initial mass function, magnetic fields, and cosmic ray or radiation pressure feedback also cannot individually explain the low SFR. We propose a self-consistent cycle of star formation in the CMZ, in which the effects of several different processes combine to inhibit star formation. The rate-limiting factor is the slow evolution of the gas towards collapse – once star formation is initiated it proceeds at a normal rate. The ubiquity of star formation inhibitors suggests that a lowered central SFR should be a common phenomenon in other galaxies. We discuss the implications for galactic-scale star formation and supermassive black hole growth, and relate our results to the star formation conditions in other extreme environments
- …