56 research outputs found

    The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia

    Get PDF
    Cytarabine (ara-C) is the most effective agent for the treatment of acute myeloid leukaemia (AML). Aberrant expression of enzymes involved in the transport/metabolism of ara-C could explain drug resistance. We determined mRNA expression of these factors using quantitative-real-time-PCR in leukemic blasts from children diagnosed with de novo AML. Expression of the inactivating enzyme pyrimidine nucleotidase-I (PN-I) was 1.8-fold lower in FAB-M5 as compared to FAB-M1/2 (P=0.007). In vitro sensitivity to deoxynucleoside analogues was determined using the MTT-assay. Human equilibrative nucleoside transporter-1 (hENT1) mRNA expression and ara-C sensitivity were significantly correlated (rp=−0.46; P=0.001), with three-fold lower hENT1 mRNA levels in resistant patients (P=0.003). hENT1 mRNA expression also seemed to correlate inversely with the LC50 values of cladribine (rp=−0.30; P=0.04), decitabine (rp=−0.29; P=0.04) and gemcitabine (rp=−0.33; P=0.02). Deoxycytidine kinase (dCK) and cytidine deaminase (CDA) mRNA expression seemed to correlate with in vitro sensitivity to gemcitabine (rp=−0.31; P=0.03) and decitabine (rp=0.33; P=0.03), respectively. The dCK/PN-I ratio correlated inversely with LC50 values for gemcitabine (rp=−0.45, P=0.001) and the dCK/CDA ratio seemed to correlate with LC50 values for decitabine (rp=−0.29; 0.04). In conclusion, decreased expression of hENT1, which transports ara-C across the cell membrane, appears to be a major factor in ara-C resistance in childhood AML

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Algae, phytoplankton and eutrophication research and management in South Africa: past, present and future

    No full text

    One clutch or two clutches? : Fitness correlates of coexisting alternative female life-histories in the European earwig

    Get PDF
    Whether to reproduce once or multiple times (semelparity vs. iteroparity) is a major life-history decision that organisms have to take. Mode of parity is usually considered a species characteristic. However, recent models suggested that population properties or condition-dependent fitness payoffs could help to maintain both life-history tactics within populations. In arthropods, semelparity was also hypothesised to be a critical pre-adaptation for the evolution of maternal care, semelparous females being predicted to provide more care due to the absence of costs on future reproduction. The aim of this study was to characterize potential fitness payoffs and levels of maternal care in semel- and itero-parous females of the European earwig Forficula auricularia. Based on 15 traits measured in 494 females and their nymphs, our results revealed that iteroparous females laid their first clutch earlier, had more eggs in their first clutch, gained more weight during the 2 weeks following hatching of the first clutch, but produced eggs that developed more slowly than semelparous females. Among iteroparous females, the sizes of first and second clutches were significantly and positively correlated, indicating no investment trade-off between reproductive events. Iteroparous females also provided more food than semelparous ones, a result contrasting with predictions that iteroparity is incompatible with the evolution of maternal care. Finally, a controlled breeding experiment reported full mating compatibility among offspring from females of the two modes of parity, confirming that both types of females belong to one single species. Overall, these results indicate that alternative modes of parity represent coexisting life-history tactics that are likely to be condition-dependent and associated with offspring development and specific levels of maternal care in earwigs
    corecore