122 research outputs found

    Factors Associated With Outcomes of Patients With Primary Sclerosing Cholangitis and Development and Validation of a Risk Scoring System.

    Get PDF
    We sought to identify factors that are predictive of liver transplantation or death in patients with primary sclerosing cholangitis (PSC), and to develop and validate a contemporaneous risk score for use in a real-world clinical setting. Analyzing data from 1,001 patients recruited to the UK-PSC research cohort, we evaluated clinical variables for their association with 2-year and 10-year outcome through Cox-proportional hazards and C-statistic analyses. We generated risk scores for short-term and long-term outcome prediction, validating their use in two independent cohorts totaling 451 patients. Thirty-six percent of the derivation cohort were transplanted or died over a cumulative follow-up of 7,904 years. Serum alkaline phosphatase of at least 2.4 × upper limit of normal at 1 year after diagnosis was predictive of 10-year outcome (hazard ratio [HR] = 3.05; C = 0.63; median transplant-free survival 63 versus 108 months; P < 0.0001), as was the presence of extrahepatic biliary disease (HR = 1.45; P = 0.01). We developed two risk scoring systems based on age, values of bilirubin, alkaline phosphatase, albumin, platelets, presence of extrahepatic biliary disease, and variceal hemorrhage, which predicted 2-year and 10-year outcomes with good discrimination (C statistic = 0.81 and 0.80, respectively). Both UK-PSC risk scores were well-validated in our external cohort and outperformed the Mayo Clinic and aspartate aminotransferase-to-platelet ratio index (APRI) scores (C statistic = 0.75 and 0.63, respectively). Although heterozygosity for the previously validated human leukocyte antigen (HLA)-DR*03:01 risk allele predicted increased risk of adverse outcome (HR = 1.33; P = 0.001), its addition did not improve the predictive accuracy of the UK-PSC risk scores. Conclusion: Our analyses, based on a detailed clinical evaluation of a large representative cohort of participants with PSC, furthers our understanding of clinical risk markers and reports the development and validation of a real-world scoring system to identify those patients most likely to die or require liver transplantation.Financial support has been received by National Institute of Health Research (RD-TRC and Birmingham Biomedical Research Centre), Isaac Newton Trust, Addenbrooke’s charitable trust, Norwegian PSC Research Center and PSC Support. GMH is supported by the Lily and Terry Horner Chair in Autoimmune Liver Disease Research, Toronto Centre for Liver Disease, Toronto

    Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain

    Get PDF
    Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left–right axis. ZIC3 encodes a nuclear protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of heterotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR structure analysis revealed that ZF1–4 had a similar structure to GLI ZF, and the basic side chains of the NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255 was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI, Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin α1/α6 impaired ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1 mutation is not due to a direct influence on the NLS

    Aircraft Regional-Scale Flux Measurements over Complex Landscapes of Mangroves, Desert, and Marine Ecosystems of Magdalena Bay, Mexico

    Get PDF
    Natural ecosystems are rarely structurally simple or functionally homogeneous. This is true for the complex coastal region of Magdalena Bay, Baja California Sur, Mexico, where the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert were studied. The Sky Arrow 650TCN environmental research aircraft proved to be an effective tool in characterizing land–atmosphere fluxes of energy, CO2, and water vapor across a heterogeneous landscape at the scale of 1 km. The aircraft was capable of discriminating fluxes from all ecosystem types, as well as between nearshore and coastal areas a few kilometers distant. Aircraft-derived average midday CO2 fluxes from the desert showed a slight uptake of −1.32 μmol CO2 m−2 s−1, the coastal ocean also showed an uptake of −3.48 μmol CO2 m−2 s−1, and the lagoon mangroves showed the highest uptake of −8.11 μmol CO2 m−2 s−1. Additional simultaneous measurements of the normalized difference vegetation index (NDVI) allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. Aircraft approaches can, therefore, be instrumental in determining regional CO2 fluxes and can be pivotal in calculating and verifying ecosystem carbon sequestration regionally when coupled with satellite-derived products and ecosystem models

    Intravesical device-assisted therapies for non-muscle-invasive bladder cancer

    Get PDF
    Non-muscle-invasive bladder cancer (NMIBC), the most prevalent type of bladder cancer, accounts for ~75% of bladder cancer diagnoses. This disease has a 50% risk of recurrence and 20% risk of progression within 5 years, despite the use of intravesical adjuvant treatments (such as BCG or mitomycin C) that are recommended by clinical guidelines. Intravesical device-assisted therapies, such as radiofrequency-induced thermochemotherapeutic effect (RITE), conductive hyperthermic chemotherapy, and electromotive drug administration (EMDA), have shown promising efficacy. These device-assisted treatments are an attractive alternative to BCG, as issues with supply have been a problem in some countries. RITE might be an effective treatment option for some patients who have experienced BCG failure and are not candidates for radical cystectomy. Data from trials using EMDA suggest that it is effective in high-risk disease but requires further validation, and results of randomized trials are eagerly awaited for conductive hyperthermic chemotherapy. Considerable heterogeneity in patient cohorts, treatment sessions, use of maintenance regimens, and single-arm study design makes it difficult to draw solid conclusions, although randomized controlled trials have been reported for RITE and EMDA

    Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease.

    Get PDF
    Primary sclerosing cholangitis (PSC) is a rare progressive disorder leading to bile duct destruction; ∼75% of patients have comorbid inflammatory bowel disease (IBD). We undertook the largest genome-wide association study of PSC (4,796 cases and 19,955 population controls) and identified four new genome-wide significant loci. The most associated SNP at one locus affects splicing and expression of UBASH3A, with the protective allele (C) predicted to cause nonstop-mediated mRNA decay and lower expression of UBASH3A. Further analyses based on common variants suggested that the genome-wide genetic correlation (rG) between PSC and ulcerative colitis (UC) (rG = 0.29) was significantly greater than that between PSC and Crohn's disease (CD) (rG = 0.04) (P = 2.55 × 10-15). UC and CD were genetically more similar to each other (rG = 0.56) than either was to PSC (P < 1.0 × 10-15). Our study represents a substantial advance in understanding of the genetics of PSC
    corecore