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ABSTRACT
In the face of increasing threats to biodiversity, the advancement of methods for
surveying biological communities is a major priority for ecologists. Recent advances
in molecular biological technologies have made it possible to detect and sequence
DNA from environmental samples (environmental DNA or eDNA); however, eDNA
techniques have not yet seen widespread adoption as a routine method for biological
surveillance primarily due to gaps in our understanding of the dynamics of eDNA
in space and time. In order to identify the effective spatial scale of this approach
in a dynamic marine environment, we collected marine surface water samples from
transects ranging from the intertidal zone to four kilometers from shore. Using PCR
primers that target a diverse assemblage of metazoans, we amplified a region of
mitochondrial 16S rDNA from the samples and sequenced the products on an Illumina
platform in order to detect communities and quantify their spatial patterns using a
variety of statistical tools. We find evidence for multiple, discrete eDNA communities
in this habitat, and show that these communities decrease in similarity as they become
further apart. Offshore communities tend to be richer but less even than those inshore,
though diversity was not spatially autocorrelated. Taxon-specific relative abundance
coincided with our expectations of spatial distribution in taxa lacking a microscopic,
pelagic life-history stage, though most of the taxa detected do not meet these criteria.
Finally, we use carefully replicated laboratory procedures to show that laboratory
treatments were remarkably similar in most cases, while allowing us to detect a faulty
replicate, emphasizing the importance of replication to metabarcoding studies. While
there is much work to be done before eDNA techniques can be confidently deployed
as a standard method for ecological monitoring, this study serves as a first analysis of
diversity at the fine spatial scales relevant tomarine ecologists and confirms the promise
of eDNA in dynamic environments.

How to cite this article O’Donnell et al. (2017), Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ 5:e3044;
DOI 10.7717/peerj.3044

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207663277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:jimmyod@uw.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3044
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.7717/peerj.3044


Subjects Biodiversity, Ecology, Marine Biology, Molecular Biology
Keywords Marine, Metabarcoding, Metagenomics, Estuarine, Molecular ecology,
Environmental monitoring

INTRODUCTION
The patterns and causes of variability in ecological communities across space are both
seminal and contentious areas of study in ecology (Hubbell, 2001; Anderson et al.,
2011). One consistently observed pattern of community spatial heterogeneity is that
communities close to one another tend to be more similar than those that are farther
apart (Nekola & White, 1999). This decrease in community similarity with increasing
spatial separation is called distance decay and has been reported from communities of
tropical trees (Condit, 2002; Chust et al., 2006), ectomycorrhizal fungi (Bahram et al.,
2013), salt marsh plants (Guo et al., 2015), and microorganisms (Martiny et al., 2011;
Chust et al., 2013; Wetzel et al., 2012; Bell, 2010). Typically, this relationship is assessed by
regressing a measure of community similarity against a measure of spatial separation for a
set of sites at which a set of species’ abundances (or presences) is calculated. Yet no existing
biodiversity survey method completely censuses all of the organisms in a given area. The
lack of a single ‘silver bullet’ method of sampling contributes inconclusiveness to the study
of spatial patterning in ecology (Levin, 1992), and leaves open the possibility of new and
more comprehensive methods.

From a boat or aircraft, scientists can count whales by sight, but not the krill on which
they feed. For example, towed fishing nets can efficiently sample organisms larger than
the mesh and slower than the boat, but overlook viruses and have undesirable effects on
charismatic air-breathing species. However, DNA-based surveys show great promise as
an efficient technique for detecting a previously unthinkable breadth of organisms from a
single sample.

Microbiologists have used nucleic acid sequencing to quantify the composition and
function of microbial communities in a wide variety of habitats (Handelsman et al., 1998;
Tyson et al., 2004; Venter et al., 2004; Iverson et al., 2012). To do so, microorganisms are
collected in a sample of environmental medium (e.g., water), their DNA or RNA is isolated
and sequenced, and the identity and abundance of sequences is considered to reflect the
community of organisms contained in the sample, which indirectly estimates the quantity
of organisms in an area.

Macroorganisms shedDNA-containing cells into the environment (environmental DNA
or eDNA) that can be sampled in the same way (Ficetola et al., 2008; Thomsen et al., 2012).
Potentially, eDNA methods allow a broad swath of macroorganisms to be surveyed from
basic environmental samples. However, the accuracy and reliability of indirect estimates
of macroorganismal abundance has been debated because the entire organisms are not
contained within the sample (Cowart et al., 2015). Concern surrounding eDNA methods
is rooted in uncertainty about the attributes of eDNA in the environment relative to actual
organisms (Shelton et al., 2016; Evans et al., 2016). Basic questions such as how long DNA
can persist in that environment and how far DNA can travel remain largely unknown
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(but see Klymus et al. (2015); Turner, Uy & Everhart (2015); Strickler, Fremier & Goldberg
(2015); Deiner & Altermatt (2014)) and impede inference about local organismal presence
from an environmental sample. As a result, estimating the spatial and temporal resolution
of eDNA studies in the field is a key step in making these methods practical.

The relationship between local organismal abundance and eDNA is further complicated
in habitats where the environmental medium itself may transport eDNA away from its
source. We know that genetic material can move away from its source precisely because
organisms can be detected indirectly without being present in the sample (Kelly et al.,
2016b). One might reasonably expect eDNA to travel farther in a highly dynamic fluid
such as the open ocean or flowing river than it would through the sediment at the bottom
of a stagnant pond (Deiner & Altermatt, 2014; Shogren et al., 2016). Yet even studies of
extremely dynamic habitats such as coastlines with highwave energy have found remarkable
evidence that eDNA transport is limited enough that DNA methods can detect differences
among communities separated by less than 100 m (Port et al., 2016).

While rigorous laboratory studies have investigated the effects of some environmental
factors on eDNA persistence (Klymus et al., 2015; Barnes et al., 2014; Sassoubre et al., 2016)
and the transport of eDNA in specific contexts (Deiner & Altermatt, 2014), we suggest that
field studies comparing the spatial distribution of communities of eDNA with expectations
based on prior knowledge of organisms’ distributions are also critical to developing a
working understanding of eDNA in the real world. Research to date has documented the
non-random spatial distribution ofmeiofaunal (Fonseca et al., 2014;Guardiola et al., 2016),
microbial (Lallias et al., 2015), and extracellular (Guardiola et al., 2015) eDNA of marine
and estuarine sediments, and of microscopic plankton in open ocean waters (De Vargas
et al., 2015). These studies conducted targeted sampling at intermediate (thousands of
meters) to global (thousands of kilometers) scales. Here, we use a grid-based environmental
sampling strategy to assess spatial variability of eDNA in a coastal marine environment
at a fine scale (tens to thousands of meters), using molecular methods that focus on
macrobial metazoans.

We apply methods derived from community ecology to understand spatial patterns and
patchiness of eDNA. The underlying mechanism thought to drive the slope of the distance
decay relationship in ecological communities is the rate of movement of individuals among
sites, which may be driven by underlying processes such as habitat suitability. Because
eDNA is shed and transported away from its source, the increased movement of eDNA
particles should homogenize community similarity, and thus erode the distance decay
relationship of eDNA communities.

Puget Sound is a deep, narrow fjord inWashington,USA,where a narrowband of shallow
bottom hugs the shoreline and abruptly gives way to a central depth of up to 300 m. This
form allows the juxtaposition of communities associated with distinctly different habitats:
shallow, intertidal benthos, and euphotic pelagic (Burns, 1985). At the upper reaches of
the intertidal, the shoreline substrate varies from soft, fine sediment to cobble and boulder
rubble. Soft intertidal sediments are inhabited by burrowing bivalves (Bivalvia), segmented
worms (Annelida), and acorn worms (Enteropneusta), and in some lower intertidal and
high subtidal ranges by eelgrass (Zostera marina) (Kozloff, 1973; Dethier, 2010). Eelgrass
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meadows harbor epifaunal and infaunal biota, and attract transient species which use the
meadows for shelter and to feed on resident organisms. Hard intertidal surfaces support
a well-documented biota including barnacles (Sessilia) and other crustaceans, mussels
(Bivalvia:Mytilidae), anemones (Actiniaria), sea stars (Asteroidea), urchins (Echinoidea),
Bryozoans (Ectoprocta), crustaceans (Decapoda), and a variety of algae (Dethier, 2010).
Hard bottoms of the lower intertidal and high subtidal are home to macroalgae such
as Laminariales and Desmarestiales which provide habitat for a distinct community of
fish and invertebrates. The upper pelagic is home to a diverse assemblage of microscopic
plankton including diatoms, copepods, and larvae (Strickland, 1983), as well as transitory
fish and marine mammals.

We took advantage of this setting to explore the spatial variation and distribution of
marine eDNA communities. Using PCR-based methods and massively parallel sequencing,
we surveyed mitochondrial 16S sequences from a suite of marine animals in water samples
collected over a grid of sites extending from the shoreline out to 4 kilometer offshore in
Puget Sound, Washington, USA. We leverage this sampling design to perform an explicitly
spatial analysis of eDNA-derived community similarity. We investigate two primary
objectives. First we examine the spatial patterning of eDNA and determine the degree to
which eDNA community similarity can be predicted by physical proximity. We expect that
physical proximity will be a strong predictor of community similarity, and that community
differences can be detected over small distances. Second, we examine the distribution of
diversity from eDNA data, and compare it to our expectations based on distributions of
macrobial communities. We expect that distinct eDNA communities exist in this setting,
and that their spatial distribution coincides with that of adult macrobial organisms.
Because of the vastly different communities of benthic macrobial metazoans as a function
of distance from shore, we expect that more than one eDNA community is present across
our 4 kilometer sampling grid, and that communities change as a function of distance from
shore. For this reason, we examine two diversity measures of eDNA communities that have
been widely used to reveal broad scale patterns based on macrobiota in many ecological
systems. Finally, we identify the taxa represented in the eDNA communities, which span
a range of life-history characteristics, and we expect that the spatial distribution of eDNA
will most closely resemble the distribution of adults in taxa with low dispersal potential.

METHODS
There are seven discrete steps to our methodology: (1) Environmental sample collection,
(2) isolation of particulates from water via filtration, (3) isolation of DNA from filter
membrane, (4) amplification of target locus via PCR, (5) sequencing of amplicons, (6)
bioinformatic translation of raw sequence data into tables of sequence abundance among
samples, and (7) community ecological analyses of eDNA. We provide brief overviews of
these steps here, and encourage the reader to review the fully detailed methods presented
in Supplemental Information 1.
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Figure 1 Map of study area.Depth in meters below sea level is indicated by shading and 25 meter con-
tours. Sampled locations are indicated by red points.

Environmental sampling
Starting from lower-intertidal patches of Zostera marina, we collected water samples at
1 m depth from 8 points (0, 75, 125, 250, 500, 1,000, 2,000, and 4,000 m) along three
parallel transects separated by 1,000 m (24 sample locations total; Fig. 1). Samples were
collected by attaching bottles to a PVC pole and lowering it over the side of a boat over
the span of one hour on 27 June 2014. To destroy residual DNA on equipment used for
field sampling and filtration, we washed with a 1:10 solution of household bleach (8.25%
sodium hypochlorite; 7.25% available chlorine) and deionized water, followed by thorough
rinsing with deionized water. Each environmental sample was collected in a clean 1 liter
high-density polyethylene bottle, the opening of which was covered with 500 micrometer
nylon mesh to prevent entry of larger particles. Immediately after collecting the sample,
the mesh was replaced with a clean lid and the sample was held on ice until filtering.

Filtration
One liter from each water sample was filtered in the lab on a clean polysulfone vacuum
filter holder fitted with a 47 millimeter diameter cellulose acetate membrane with 0.45
micrometer pores. Filter membranes were moved into 900 microliters of Longmire buffer
(Longmire, Maltbie & Baker, 1997) using clean forceps and stored at room temperature
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(Renshaw et al., 2015). To test for the extent of contamination attributable to laboratory
procedures, we filtered three replicate 1 liter samples of deionized water. These samples
were treated identically to the environmental samples throughout the remaining protocols.

DNA purification
DNA was purified from the membrane following a phenol:chloroform:isoamyl alcohol
protocol following Renshaw (Renshaw et al., 2015). Preserved membranes were incubated
at 65 ◦C for 30 min before adding 900 microliters of phenol:chloroform:isoamyl alcohol
and shaking vigorously for 60 s. We conducted two consecutive chloroform washes by
centrifuging at 14,000 rpm for 5 min, transferring the aqueous layer to 700 microliters
chloroform, and shaking vigorously for 60 s. After a third centrifugation, 500 microliters
of the aqueous layer was transferred to tubes containing 20 microliters 5 molar NaCl and
500 microliters 100% isopropanol, and frozen at −20 ◦C for approximately 15 h. Finally,
all liquid was removed by centrifuging at 14,000 rpm for 10 min, pouring off or pipetting
out any remaining liquid, and drying in a vacuum centrifuge at 45 ◦C for 15 min. DNA
was resuspended in 200 microliters of ultrapure water. Four replicates of genomic DNA
extracted from tissue of a species absent from the sampled environment (Oreochromis
niloticus) served as positive control for the remaining protocols.

PCR amplification
We chose a primer set that amplifies an approximately 115 base pair (bp) region of the
mitochondrial 16S rRNA gene in at least 10metazoan phyla from this habitat, excludes non-
metazoans, and resolves taxonomy to the family level in most cases using a public sequence
database (Kelly et al., 2016a).We used a two-step polymerase chain reaction (PCR) protocol
described by O’Donnell et al. (2016) to generate four replicate products from each DNA
sample. In the first set of reactions, primers were identical in every reaction (forward:
AGTTACYYTAGGGATAACAGCG; reverse: CCGGTCTGAACTCAGATCAYGT);
primers in the second set of reactions included these same sequences but with 3 variable
nucleotides (NNN) and an index sequence on the 5′ end (see Sequencing Metadata).
We used the program OligoTag (Coissac, 2012) to generate 30 unique 6-nucleotide index
sequences differing by a minimum Hamming distance of 3 (see Sequencing Metadata).
Indexed primers were assigned to samples randomly, with the identical index sequence on
the forward and reverse primer to avoid errors associated with dual-indexed multiplexing
(Schnell, Bohmann & Gilbert, 2015). In a UV-sterilized hood, we prepared 25 microliter
reactions containing 18.375 microliters ultrapure water, 2.5 microliters 10× buffer,
0.625 microliters deoxynucleotide solution (8 millimolar), 1 microliter each forward and
reverse primer (10 micromolar, obtained lyophilized from Integrated DNA Technologies;
Coralville, IA, USA), 0.25 microliters Qiagen HotStar Taq polymerase, and 1.25 microliter
genomic or eDNA template at 1:100 dilution in ultrapure water. PCR thermal profiles
began with an initialization step (95 ◦C; 15 min) followed by cycles (40 and 20 for the first
and second reaction, respectively) of denaturation (95 ◦C; 15 s), annealing (61 ◦C; 30 s),
and extension (72 ◦C; 30 s). A total of 20 identical PCRs were conducted from each DNA
extract using non-indexed primers; these were pooled into four groups of five in order to
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ensure ample template for the subsequent PCR with indexed primers. In order to isolate
the fragment of interest from primer dimer and other spurious fragments generated in
the first PCR, we used the AxyPrep Mag FragmentSelect-I kit with solid-phase reversible
immobilization (SPRI) paramagnetic beads at 2.5× the volume of PCR product (Axygen
BioSciences, Corning, NY, USA). A 1:5 dilution in ultrapure water of the product was used
as template for the second reaction. PCR products of the second reaction were purified
using the Qiagen MinElute PCR Purification Kit (Qiagen, Hilden, Germany). Ultrapure
water was used in place of template DNA and run along with each batch of PCRs to serve
as a negative control for PCR; none of these produced visible bands on an agarose gel.
In total, four separate replicates from each of 31 DNA samples were carried through the
two-step PCR process for a total of 124 sequenced PCR products. These were combined
with additional samples from other projects, totaling 345 samples for sequencing.

DNA sequencing
Up to 30 PCR products were combined according to their primer index in equal
concentration into one of 14 pools, and 150 nanograms from each were prepared for
library sequencing using the KAPA high-throughput library prep kit with real-time library
amplification protocol (KAPA Biosystems, Wilmington, MA, USA). Each of these ligated
sequencing adapters included an additional six base pair index sequence (NEXTflex DNA
barcodes; BIOO Scientific, Austin, TX, USA). Thus, each PCR product was identifiable
via its unique combination of index sequences in the sequencing adapters and primers.
Fragment size distribution and concentration of each library was quantified using an
Agilent 2100 BioAnalyzer. Libraries were pooled in equal concentrations and sequenced
for 150 base pairs in both directions (PE150) using an Illumina NextSeq at the Stanford
Functional Genomics Facility, where 20% PhiX Control v3 was added to act as a sequencing
control and to enhance sequencing depth by increasing sequence diversity. Raw sequence
data in fastq format is publicly available (see Data Availability).

Sequence Data Processing (Bioinformatics)
Detailed bioinformatic methods are provided in the supplemental material, and analysis
scripts used from raw sequencer output onward can be found in the public project directory
(see Analysis Scripts). Briefly, we performed five steps to process the sequence data: (1)
Merge paired-end reads (Zhang et al., 2014), (2) eliminate low-quality reads (Edgar, 2010;
Rognes et al., 2016), (3) eliminate PCR artifacts (chimeras) (Edgar, 2010; Rognes et al., 2016;
Martin, 2011), (4) cluster reads by similarity into operational taxonomic units (OTUs)
(Mahé et al., 2014), and (5) match observed sequences to taxon names (Camacho et al.,
2009; Chamberlain & Szöcs, 2013; Chamberlain et al., 2016). Additionally, we checked
for consistency among PCR replicates, excluded extremely rare sequences, and rescaled
(rarefied) the data to account for differences in sequencing depth. The data for input to
further analyses are a contingency table of the mean count of unique sequences, OTUs, or
taxa present in each environmental sample.
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Ecological analyses
After gathering the data, we use the eDNA community observed at each location to make
inferences about the spatial patterning of eDNA communities. We use statistical tools
from community ecology to assess the spatial structure of eDNA communities. We report
similarity (1- dissimilarity) rather than dissimilarity in all cases for ease of interpretation.

Objective 1: community similarity as a function of distance
Distance decay
To address our first objective and determine whether or not nearby samples are more
similar than distant ones, we fit a nonlinear model to represent decreasing community
similarity with distance. We calculated the pairwise Bray–Curtis similarity (1—Bray–Curtis
dissimilarity) between eDNA communities using the R package vegan (Oksanen et al.,
2016) and the great circle distance between sampling points using the Haversine method
as implemented by the R package geosphere (Hijmans, 2016). This model is similar to the
Michaelis–Menten function, but with an asymptote fixed at 0:

yij =
AB

B+xij
(1)

Where the relationship between community similarity (yij) and spatial distance (xij)
between observations i and j is determined by the similarity of samples at distance 0
(A), and the distance at which half the total change in similarity is achieved (B). This
allows for samples collected very close together (near 0) to have similarity significantly
less than one. We assessed model fit using the R function nls (R Core Team, 2016), using
the nl2sol algorithm from the Port library to solve separable nonlinear least squares using
analytically computed derivatives (http://netlib.org/port/nsg.f). We set bounds of 0 and
1 for the intercept parameter and a lower bound of 0 for the distance at half similarity;
starting values of these parameters were 0.5 and xmax/2, respectively. We calculated a 95%
confidence interval for the parameters and the predicted values using a first-order Taylor
expansion approach implemented by the function predictNLS in the R package propagate
(Spiess, 2014).

There are other conceptually reasonable forms to expect the space-by-similarlity
relationship to take; we present these in the supplemental material along with alternative
data subsets and similarity indices.

Objective 2: spatial distribution of diversity
Community classification
To determine the spatial distribution and variation of eDNA communities (objective 2),
we used multivariate classification algorithms. We simultaneously assessed the existence
of distinct community types and the membership of samples to those community types
using an unsupervised classification algorithm known as partitioning around medoids
(PAM; sometimes referred to as k-medoids clustering) (Kaufman & Rousseeuw, 1990), as
implemented in the R package cluster (Maechler et al., 2016). The classification of samples
to communities was made on the basis of their pairwise Bray–Curtis similarity, calculated
using the function vegdist in the R package vegan (Oksanen et al., 2016). Other distance
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metrics were evaluated but had no appreciable effect on the outcome of the analysis (Fig.
S1). In order to chose an optimal number of clusters (K ), we evaluated the distribution of
silhouette widths, a measure of the similarity between each sample and its cluster compared
to its similarity to other clusters. We repeated the analysis using fuzzy clustering (FANNY,
(Kaufman & Rousseeuw, 1990)); however, the results were qualitatively similar to the results
using PAM so we omit them here.

Aggregate measures of diversity
We calculated two measures of diversity, richness and evenness, to ask if aggregate metrics
of the eDNA community showed evidence of spatial patterning. Richness is a measure
of the number of distinct types of organisms present and so ranges from 1 (only one
taxon observed) to S, the number of taxa observed across all samples. To calculate the
evenness of the distribution of abundance of taxa in a sample, we used the complement
of the Simpson (1949) index (1−6p2i , where pi is the proportional abundance of taxon i).
The values of this index ranges from 0 to 1, with the value interpreted as the probability
that two sequences randomly selected from the sample will belong to different taxa; thus,
larger values of the index indicate more evenly divided communities (Magurran, 2004).
We calculated Moran’s I for both diversity metrics to test for spatial autocorrelation. We
also tested for a linear effect of log-transformed distance from shore on each measure of
diversity to ask how diversity changes over this strong environmental gradient.

Taxon and life history patterns
After assigning taxon names to the abundance data, we plotted the distribution in space
of a selection of taxa to compare with our expectations on the basis of adult distributions
(objective 2). Our aim was to understand where each taxon occurred in the greatest
proportional abundance, and its distribution in space relative to that maximum. Thus, we
rescaled each sample to proportional abundance, extracted the data from a single taxon,
and scaled those values between 0 and 1. We collated life history characteristics for each of
the major taxonomic groups recovered, including dispersal range of the gametes, larvae,
and adults, adult habitat type and selectivity, and adult body size. For each life history
stage of each taxon group, we made an order-of-magnitude approximation of the scale of
dispersal. For example, internally fertilized species were assigned a gamete range of 0 km,
while broadcast spawners were assigned a gamete range of 10 km. Similarly, adult range size
was approximated as 0 km (sessile), 1 km (motile but not pelagic), or 10 km (highly mobile,
pelagic). Variables were specified as ’multiple’ for life history stages known to span more
than 1 magnitude of range size. For groups to which sequences were annotated with high
confidence, but for which life history strategy is diverse or poorly known (e.g., families in
the phylumNemertea), we used conservative, coarse approximations at a higher taxonomic
rank (see Life History Data). These data were used to contextualize group-specific spatial
distributions and inform expectations based on known adult distributions.
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RESULTS
Sequence data processing (bioinformatics)
Preliminary sequence analysis strongly suggested that the observed variation among
environmental samples reflects true variation in the environment, rather than variability
due to lab protocols, for the following reasons (note that all value ranges are reported as
mean plus andminus one standard deviation). First, all libraries passed the FastQC per-base
sequence quality filter, generating a total of 371,576,190 reads passing filter generated in
each direction. Second, samples in this study were represented by an adequate number
of reads (333,537.9 ± 112,200.5), with no individual sample receiving fewer than 130,402
reads. Third, there was a very low frequency of cross-contamination from other libraries
into those reported here (5e–005 ± 8e–05; max proportion 0.00034). Fourth, after scaling
all samples to the same sequencing depth, OTUs with abundance greater than 178 reads
(0.14%of a sample’s reads) experienced no turnover among PCR replicates within a sample.
Fifth, sequence abundances among PCR replicates within water samples were remarkably
consistent. A single sample had low similarity among PCR replicates (0.659) after removing
this outlier, the lowest mean similarity among replicates within a sample was 0.966. Overall
similarities among PCR replicates within a sample were extremely high (0.976 ± 0.013),
and far higher than those among samples (0.3± 0.16). Across PCR replicates, each sample
was represented by at least 781425 reads in the raw data and contained between 111 and
443 rarefied OTUs (Fig. S2).

Ecological analyses
Distance decay
Physical proximity is a good predictor of eDNA community similarity: similarity decreased
from 0.40 (95% CI [0.36–0.45]) to half that amount at 4,500 m (95% CI [2,900–7,500])
(Fig. 2).

Community classification
Despite a clear trend in community similarity as a function of spatial separation, the results
from our classification analysis are difficult to interpret. The silhouette analysis indicated
the presence of 8 distinct communities; however, the gain in mean silhouette width from 2
was small (0.1), and lacked a distinctive peak (Fig. 3), indicating substantial uncertainty in
the clustering algorithm. Thus, we present the results of cluster assignment for both K = 2
and K = 8 to illustrate the range of results (Fig. 4). Excluding taxa which occur in only
one site had no discernible effect on the outcome of the PAM analysis (number of clusters,
assignment to clusters). While there was no distinct spatial divide indicating the presence of
an inshore versus an offshore community, one of the two communities (at K = 2) occurred
in only two out of 18 samples inside 1,000 m from shore, and never occurred within 125 m
of shore, suggesting the presence of an inshore and offshore community.

Diversity in space
Sites offshore tend to be less rich and more even than those inshore (Fig. 5). Mean OTU
richness declined by 1.42 per 1,000 m from a mean of 17.6 taxa (95% CI= 2.15) inshore to
11.9 taxa (95% CI= 4.31) at offshore locations (p= 0.0415; Fig. 5). Evenness increased by
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.0666 per 1,000 m from 0.225 (95% CI = 0.0558) to 0.491 (95% CI= ±0.112), indicating
that sequence reads were less evenly distributed among taxa in offshore samples (p� 0.05;
Fig. 5). The subset of data used for this analysis had no qualitative effect on the outcome
of this analysis (Fig. S3). There was no evidence for spatial autocorrelation for any of the
diversity metrics (Moran’s I, p> 0.05; Fig. 6).

Taxon and life history patterns
We were able to assign a taxon name with confidence to 136 of 146 OTU sequences. The
vast majority of sequences (97.6%) and OTUs (96.9%) were matched to organisms that
have high potential for dispersal at either the gamete, larval, or adult stage, making it
impossible to determine whether the source of that DNA was adults with well-documented
spatial patterns (e.g., sessile nearshore specialists) or highly mobile early life history stages.
Of the 6 OTUs for which dispersal is limited during all life history stages, only 2 occurred in
more than two samples, precluding a quantitative comparison of spatial dispersion based
on life history characteristics. These were assigned to Cymatogaster aggregata, a viviparous
nearshore fish with internal fertilization, and Cupolaconcha meroclista, a sessile Vermetid
gastropod with presumed internal fertilization and short larval dispersal (Strathmann
& Strathmann, 2006; Phillips & Shima, 2010; Calvo & Templado, 2004). Cymatogaster
aggregata was distinctly more abundant close to shore, with no sequences occurring
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in any sample beyond 250 m (Fig. 7). Cupolaconcha meroclista showed no such distinct
spatial trend, occurring in nearly equal abundance at three sites, 75, 500, and 2,000 m
from shore. An additional species that was highly abundant in the sequence data, the krill
Thysanoessa raschii, has pelagic adults, highly seasonal reproduction, and sinking eggs;
their distribution was consistent with our expectations based on a tendency of adults to
aggregate offshore. Finally, the two most abundant taxa in the dataset were the mussel
genus Mytilus and the Barnacle order Sessilia; the adults of both taxa are sessile and occur
exclusively on hard intertidal substrata but have highly motile larvae. Because large-scale
dispersal could not be ruled out for the vast majority of taxa, subsetting the community
data by taxonomic group had no qualitative effect on the spatial patterning or diversity
metrics, and we omit those results here.

DISCUSSION
Indirect surveys of organismal presence are a key development in ecosystem monitoring
in the face of increased anthropogenic pressure and dwindling resources for ecological
research. Monitoring of organisms using environmental DNA is an especially promising
method, given the rapid pace of advancement in technological innovation and cost
efficiency in the field of DNA sequencing and quantification. We document four key
patterns: (1) eDNA communities far from one another tend to be less similar than those
that are nearby, (2) distinct eDNA communities exist and are distributed in a non-random
fashion, (3) diversity declines with distance from shore, and (4) spatial patterning of eDNA
is associated with taxon-specific life history characteristics.
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Communities far from one another tend to be less similar than those
that are nearby
Wedemonstrate that distant locations have less-similar eDNA communities than proximate
locations in Puget Sound, a dynamic marine environment. Our finding is in line with
observations based on traditional surveys of terrestrial plants and fungi (Nekola & White,
1999; Bahram et al., 2013; Condit, 2002; Chust et al., 2006) and of microorganisms in
freshwater (Wetzel et al., 2012), marine (Chust et al., 2013), and estuarine (Martiny et al.,
2011) environments. To our knowledge, it is the first to report such a pattern using
massively parallel sequencing of environmental DNA in the marine environment, and
the first using any technique to describe this pattern from macrobial metazoans. We note
that the theoretical expectation is that samples at very close distance be nearly completely
similar, while our samples separated by the 50 m were only 40% similar. We interpret this
to reflect the highly dynamic nature of this environment, which could cause DNA to be
distributed quickly from its source, eroding the rise in similarity at small distances. At the
same time, community similarity decreased to very low levels at larger scales, indicating that
DNA distribution is not completely unpredictable. This finding implies that the effectively
sampled area of individual water samples for eDNA analysis is likely to be quite small
(<100 m) in this nearshore environment. Our estimated distance-decay relationship does
indicate that proximate samples are more similar than distant samples, but we suggest this
pattern is partially obscured by other factors, including signal from mobile, microscopic
life-stages.

Distinct eDNA communities exist and are distributed in a non-random
fashion
We demonstrate strong evidence for distinct community types and the non-random
spatial patterning of those communities. While the spatial distributions of communities
is surprising if one were concerned only with the macroscopic life stages of metazoans,
it indeed does align with the broader view that even offshore pelagic communities are
comprised of and influenced by nearshore organisms. This result underscores the idea
that areas immediately offshore act as ecotones, a mixing zone of taxa characteristic
of benthic and pelagic environments. While there was no distinct break in community
types between onshore and offshore sites, there was some clustering of community types
that may be explained by oceanographic features such as nearshore eddies generated
by strong tidal exchange in a steep bathymetric setting (Yang & Khangaonkar, 2010). It
would be useful to better understand such features during the period of sampling, by
way of oceanographic monitoring devices. Finally, the uncertainty in identification of the
number of distinct clusters to best characterize the community underlines the difficulty of
identifying community patterns with the number of taxonomic groups considered here.We
suspect that the signature of eDNA from microscopic life-stages may explain our inability
to easily detect spatial community level patterns that align with our initial expectations.

Richness declines and evenness increases with distance from shore
We found that richness declined while evenness increased with distance from shore.
Such a pattern is consistent with many other ecosystems which show strong clines in
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diversity metrics over environmental gradients. However, our study is novel in that it
corroborates a cline well-known on macroscales for macrobiota on a much smaller spatial
scale for microscopic animals, suggesting that there may be a self-similarity across scales
in diversity patterning (Levin, 1992). The coastal ocean is a highly productive and diverse
ecosystem, where biomass is concentrated most heavily along the bottom and shoreline
(Ray, 1988). This differential in biomass concentration from the shoreline to open waters
may contribute to the opposing trends we detected.Where particles (organisms, tissues, and
cells) are sparse, fewer would be collected per sample of constant volume, thus decreasing
the probability of drawing as many types (richness) and increasing the probability that any
two particles originate from the same type (evenness). Intriguingly, the cline in diversity
from inshore to offshore was not determined by shared changes in communities as one
moved offshore; the classification analysis suggested a fair amount of differences among
communities at a given offshore distance (Fig. 4).

Spatial patterning of eDNA is associated with taxon-specific life
history
In contrast to our expectations, other taxa including species with sessile adult stages
restricted to benthic hard substrates (e.g., barnacles, mussels) are among themost abundant
taxa at sites furthest from shore.However, the larvae and gametes of these taxa are abundant,
pelagic, and can be transported long distances bywatermovement (Strathmann, 1987). This
indicates that we likely detected DNA of their pelagic phase gametes and larvae. It is always
possible that DNA of adults was advected over long distances and detected offshore but in
light of our results with krill and surfperch, we view this as unlikely.We interpret our results
as evidence that the chaotic spatial distribution of eDNA communities (Fig. 4) results from
our primers’ affinity for many species which at some point exist as microscopic pelagic
gametes or larvae. Our results emphasize that expected results based on easily visually
observed individuals or detectable with traditional sampling gear such as nets may be very
different from results using eDNA. This does caution that eDNA surveys may have different
purposes and may not be directly comparable to existing surveys (Shelton et al., 2016).

We acknowledge that sampling artifacts may have affected our results. For example
if entire multicellular individuals were captured in our samples, their DNA could be
in much greater density than eDNA, affecting the observed community. Our sampling
bottles excluded particles larger than 500 micrometers, but gametes and very small larvae
could have gained entry. It is possible that even a single small individual, containing
many thousand mitochondria, would overwhelm the signal of another species from which
hundreds of cells had been sloughed from many, larger individuals. Data on larval size
distribution at the time of sampling from each species in our data set would allow us to
estimate the frequency of such events. Nevertheless, it is precisely the sensitivity to small
particles that makes the eDNA approach powerful, so we are reluctant to recommend that
aquatic eDNA sampling use finer pre-filtering. Instead, we emphasize the importance of
designing and selecting primer sets that selectively amplify target organisms. In the case of
the present study, in order to recover patterns matching our expectations, this would be
non-transient, benthic marine organisms lacking any pelagic life stage.
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The marker we chose for this study detects a wide variety of metazoans while excluding
other more common taxa; however, it does not effectively discriminate among species
within a higher group in all cases. Other markers, such as mitochondrial cytochrome c
oxidase subunit 1 (COX1, CO1, or COI) may provide adequate species-level resolution
in some metazoan groups, but have other shortcomings including taxon dropout (Deagle
et al., 2014) and amplification of more abundant non-metazoans, as we discovered in an
accompanying study (Kelly et al., 2016a). Both have undesirable effects of biasing estimates
of diversity. In our case, it is possible that the lumping of multiple species into one group
underestimates the true richness of the group and of the entire sample, in turn obscuring
true underlying patterns of diversity. In the case of COX1, well-documented primer
biases cause failure to amplify some taxa, particularly in mixed samples, with the same
result (Deagle et al., 2014). In fact, even surveys relying on traditional capture techniques
(e.g., seine nets) and morphological characteristics are subject to biases imposed by the
sampling gear (e.g., mesh size), the observer (e.g., taxonomic expertise), and organisms
(e.g., morphologically cryptic species). Similarly, no single molecular marker adequately
and effectively samples all taxa without bias (Drummond et al., 2015), and thus the choice
of marker is an important and context-dependent one. Until whole-genome sequencing
of individual cells is a reality, the tradeoffs between taxonomic breadth and resolution will
continue to be problematic for metabarcoding studies, just as they are for more traditional
ecological survey methods (Kelly et al., 2016a).

Our results also highlight the need for curated life-history databases. As technological
advances increase the speed and throughput of DNA sequencing and sequence processing,
making sense of these data in a timely manner requires that natural history data be stored
in standard formats in centralized repositories. The rate at which we can make sense of
high-throughput survey methods will be limited by our ability to collate auxiliary data.
Databases such as Global Biodiversity Information Facility (GBIF), Encyclopedia of Life
(EOL), and FishBase (Parr et al., 2014; Froese & Pauly, 2016) contain records of taxonomy,
occurrence, and other rudimentary data types, but there is no centralized, standardized
repository for even basic natural history data such as body size. As NCBI’s nucleotide
and protein sequence database (GenBank) has facilitated transformative studies in diverse
fields, an ecological analog would be a boon for biodiversity science.

Surveys based on eDNA are intensely scrutinized because of the danger that the final
data are subject to complicated laboratory and bioinformatic procedures. Finding virtually
no variability among lab and bioinformatic treatments from the point of PCR onward,
we were confident our results represented actual field-based differences among samples.
However, we note that one PCR replicate had a clear signal of contamination in that
the sequence community was extremely similar to those from a different environmental
sample. The source of this error is difficult to identify, but seems most likely to be an error
during PCR preparation, either in assignment or pipetting during preparation of indexed
primers. While the remainder of our results would be largely unchanged had we sequenced
a single replicate per environmental sample, we believe the sequencing of PCR replicates is
critical for ensuring data quality in eDNA sequencing studies.
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While there is much work to be done before eDNA techniques can be confidently
deployed as a standard method for ecological monitoring, this study serves as a first
analysis of diversity at the fine spatial scales that are likely to be relevant to eDNA work in
the field across a range of study systems.
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