30 research outputs found

    The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms

    Get PDF
    The aim of this study was to evaluate the effects of Citrus limonum and Citrus aurantium essential oils (EOs) compared to 0.2% chlorhexidine (CHX) and 1% sodium hypochlorite (NaOCl) on multi-species biofilms formed by Candida albicans, Enterococcus faecalis and Escherichia coli. The biofilms were grown in acrylic disks immersed in broth, inoculated with microbial suspension (106 cells/mL) and incubated at 37°C / 48 h. After the biofilms were formed, they were exposed for 5 minutes to the solutions (n = 10): C. aurantium EO, C. limonum EO, 0.2% CHX, 1% NaOCl or sterile saline solution [0.9% sodium chloride (NaCl)]. Next, the discs were placed in sterile 0.9% NaCl and sonicated to disperse the biofilms. Tenfold serial dilutions were performed and the aliquots were seeded onto selective agar and incubated at 37°C / 48 h. Next, the number of colony-forming units per milliliter was counted and analyzed statistically (Tukey test, p ≤ 0.05). C. aurantium EO and NaOCl inhibited the growth of all microorganisms in multi-species biofilms. C. limonum EO promoted a 100% reduction of C. albicans and E. coli, and 49.3% of E. faecalis. CHX was less effective against C. albicans and E. coli, yielding a reduction of 68.8% and 86.7%, respectively. However, the reduction of E. faecalis using CHX (81.7%) was greater than that obtained using C. limonum EO. Both Citrus limonum and Citrus aurantium EOs are effective in controlling multi-species biofilms; the microbial reductions achieved by EOs were not only similar to those of NaOCl, but even higher than those achieved by CHX, in some cases.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista Institute of Science and Technology Department of Biosciences and Oral DiagnosisUniversidade Federal de São Paulo (UNIFESP) Institute of Environmental, Chemical and Pharmaceutics Sciences Department of Earth and Exact SciencesUNIFESP, Institute of Environmental, Chemical and Pharmaceutics Sciences Department of Earth and Exact SciencesFAPESP: 09/52048-1FAPESP: 2010/00879-4SciEL

    Aircraft Regional-Scale Flux Measurements over Complex Landscapes of Mangroves, Desert, and Marine Ecosystems of Magdalena Bay, Mexico

    Get PDF
    Natural ecosystems are rarely structurally simple or functionally homogeneous. This is true for the complex coastal region of Magdalena Bay, Baja California Sur, Mexico, where the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert were studied. The Sky Arrow 650TCN environmental research aircraft proved to be an effective tool in characterizing land–atmosphere fluxes of energy, CO2, and water vapor across a heterogeneous landscape at the scale of 1 km. The aircraft was capable of discriminating fluxes from all ecosystem types, as well as between nearshore and coastal areas a few kilometers distant. Aircraft-derived average midday CO2 fluxes from the desert showed a slight uptake of −1.32 μmol CO2 m−2 s−1, the coastal ocean also showed an uptake of −3.48 μmol CO2 m−2 s−1, and the lagoon mangroves showed the highest uptake of −8.11 μmol CO2 m−2 s−1. Additional simultaneous measurements of the normalized difference vegetation index (NDVI) allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. Aircraft approaches can, therefore, be instrumental in determining regional CO2 fluxes and can be pivotal in calculating and verifying ecosystem carbon sequestration regionally when coupled with satellite-derived products and ecosystem models

    Analysis of airborne flux measurements of heat, moisture and carbon dioxide, and their correlation with land cover types in BOREAS

    No full text
    The landscape of the boreal forest in north-central Canada is characterised by mosaics of broad-leaved deciduous trees (aspen, Populus; birch, Betula), evergreen conifers (black spruce, Picea mariana; jack pine, Pinus banksiana; and larch, Larix), fens and lakes. The forest has been cited as the possible location of a global carbon sink, and its likely response in the event of global climate change remains unclear. To improve our current understanding of the links between the boreal forest ecosystem and the lower atmosphere, the Boreal Ecosystem-Atmosphere Study (BOREAS) was executed in a series of field experiments in 1994 and 1996. This thesis documents the efforts made to characterise and map temporal and spatial distributions of the fluxes of heat, water vapour and CO2 over two 16 km x 16 km heterogeneous sites at the BOREAS study sites.Most of the data in this thesis were obtained from the airborne observations by the Canadian Twin Otter Aircraft, operated by the Institute for Aerospace Research of the Canadian National Research Council, at the BOREAS Northern Study Area (NSA), and Southern Study Area (SSA). The research aircraft was flown at a fixed altitude of about 30 m agl. The data acquired in 1994 were primarily used to develop an objective deterending scheme in eddy-correlation flux estimates, that took into consideration the physical nature of turbulent transport during convective daytime conditions, and to map the spatial distribution of sensible heat, latent heat and CO2 fluxes over three intensive field campaigns. Maps of spatial patterns of the surface characteristics, such as the surface temperature excess over air temperature (Ts-T a) and Greenness index (GI), were also constructed. The mapping procedure involved generation of an array of grid points by block averaging the parameter of interests along the flight lines, spaced 2 km apart, over 2 km windows, with 1 km overlap between adjacent windows. The (Ts-Ta) maps showed, not surprisingly, that surface temperatures were relatively cooler over the mature forests than over the disturbed, regenerating and burn areas. However, they also showed a decoupling between sensible heat flux and T s-Ta not seen in less complex terrain. By contrast, close correspondence was observed between maps of CO2 flux and greenness, suggesting that the potential to infer CO2 exchange from remote sensing observations of the surface is higher than that for energy exchange. (Abstract shortened by UMI.
    corecore