2,701 research outputs found

    Tensor models and hierarchy of n-ary algebras

    Get PDF
    Tensor models are generalization of matrix models, and are studied as models of quantum gravity. It is shown that the symmetry of the rank-three tensor models is generated by a hierarchy of n-ary algebras starting from the usual commutator, and the 3-ary algebra symmetry reported in the previous paper is just a single sector of the whole structure. The condition for the Leibnitz rules of the n-ary algebras is discussed from the perspective of the invariance of the underlying algebra under the n-ary transformations. It is shown that the n-ary transformations which keep the underlying algebraic structure invariant form closed finite n-ary Lie subalgebras. It is also shown that, in physical settings, the 3-ary transformation practically generates only local infinitesimal symmetry transformations, and the other more non-local infinitesimal symmetry transformations of the tensor models are generated by higher n-ary transformations.Comment: 13 pages, some references updated and correcte

    Exact Results in Quiver Quantum Mechanics and BPS Bound State Counting

    Full text link
    We exactly evaluate the partition function (index) of N=4 supersymmetric quiver quantum mechanics in the Higgs phase by using the localization techniques. We show that the path integral is localized at the fixed points, which are obtained by solving the BRST equations, and D-term and F-term conditions. We turn on background gauge fields of R-symmetries for the chiral multiplets corresponding to the arrows between quiver nodes, but the partition function does not depend on these R-charges. We give explicit examples of the quiver theory including a non-coprime dimension vector. The partition functions completely agree with the mathematical formulae of the Poincare polynomials (chi_y-genus) and the wall crossing for the quiver moduli spaces . We also discuss exact computation of the expectation values of supersymmetric (Q-closed) Wilson loops in the quiver theory.Comment: 40 pages, 7 figures; v2: minor corrections and references are added; v3: references added, typos corrected, discrepancy in the non-coprime case resolve

    Mapping multiplex hubs in human functional brain network

    Get PDF
    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e. hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches.Comment: 11 pages, 8 figures, 2 table
    • …
    corecore