1,891 research outputs found

    Development of 5006 Full-Length CDNAs in Barley: A Tool for Accessing Cereal Genomics Resources

    Get PDF
    A collection of 5006 full-length (FL) cDNA sequences was developed in barley. Fifteen mRNA samples from various organs and treatments were pooled to develop a cDNA library using the CAP trapper method. More than 60% of the clones were confirmed to have complete coding sequences, based on comparison with rice amino acid and UniProt sequences. Blastn homologies (E<1E-5) to rice genes and Arabidopsis genes were 89 and 47%, respectively. Of the 5028 possible amino acid sequences derived from the 5006 FLcDNAs, 4032 (80.2%) were classified into 1678 GreenPhyl multigenic families. There were 555 cDNAs showing low homology to both rice and Arabidopsis. Gene ontology annotation by InterProScan indicated that many of these cDNAs (71%) have no known molecular functions and may be unique to barley. The cDNAs showed high homology to Barley 1 GeneChip oligo probes (81%) and the wheat gene index (84%). The high homology between FLcDNAs (27%) and mapped barley expressed sequence tag enabled assigning linkage map positions to 151–233 FLcDNAs on each of the seven barley chromosomes. These comprehensive barley FLcDNAs provide strong platform to connect pre-existing genomic and genetic resources and accelerate gene identification and genome analysis in barley and related species

    Identification of antisense long noncoding RNAs that function as SINEUPs in human cells

    Get PDF
    Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5' UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species

    Long Non-Coding RNA Function in CD4+ T Cells : What We Know and What Next?

    Get PDF
    The non-coding genome has previously been regarded as "junk" DNA; however, emerging evidence suggests that the non-coding genome accounts for some of the greater biological complexity observed in mammals. Research into long non-coding RNAs (lncRNAs) has gathered speed in recent years, and a growing body of evidence has implicated lncRNAs in a vast range of cellular functions including gene regulation, chromosome organisation and splicing. T helper cells offer an ideal platform for the study of lncRNAs given they function as part of a complex cellular network and undergo remarkable and finely regulated gene expression changes upon antigenic stimulation. Using various knock down and RNA interaction studies several lncRNAs have been shown to be crucial for T helper cell differentiation, activation and function. Given that RNA targeting therapeutics are rapidly gaining attention, further understanding the mechanistic role of lncRNAs in a T helper context is an exciting area of research, as it may unearth a wide range of new candidate targets for treatment of CD4+ mediated pathologies

    Simplified ontologies allowing comparison of developmental mammalian gene expression

    Get PDF
    The Developmental eVOC ontologies presented are simplified orthogonal ontologies describing the temporal and spatial distribution of developmental human and mouse anatomy

    Beyond the FANTOM4

    Get PDF

    High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression

    Get PDF
    Many Eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications, and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5'-complete cDNA sequencing with an integrated data analysis workflow to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive dataset that represents the first available developmental timecourse of promoter usage. We found that over 40% of developmentally expressed genes have at least 2 promoters, and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1,300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes

    CAGE-TSSchip: promoter-based expression profiling using the 5'-leading label of capped transcripts

    Get PDF
    A novel approach that combines CAGE expression analysis with oligonucleotide array technology allows for the accurate and sensitive detection of promoter-based transcriptional activity
    corecore