85 research outputs found

    A 700 year record of Southern Hemisphere extratropical climate variability

    Get PDF
    Annually dated ice cores from West and East Antarctica provide proxies for past changes in atmospheric circulation over Antarctica and portions of the Southern Ocean, temperature in coastal West and East Antarctica, and the frequency of South Polar penetration of El Niño events. During the period AD 1700–1850, atmospheric circulation over the Antarctic and at least portions of the Southern Hemisphere underwent a mode switch departing from the out-of-phase alternation of multi-decadal long phases of EOF1 and EOF2 modes of the 850 hPa field over the Southern Hemisphere (as defined in the recent record by Thompson and Wallace, 2000; Thompson and Solomon, 2002) that characterizes the remainder of the 700 year long record. From AD 1700 to 1850, lower-tropospheric circulation was replaced by in-phase behavior of the Amundsen Sea Low component of EOF2 and the East Antarctic High component of EOF1. During the first phase of the mode switch, both West and East Antarctic temperatures declined, potentially in response to the increased extent of sea ice surrounding both regions. At the end of the mode switch, West Antarctic coastal temperatures rose and East Antarctic coastal temperatures fell, respectively, to their second highest and lowest of the record. Polar penetration of El Niño events increased during the mode switch. The onset of the AD 1700–1850 mode switch coincides with the extreme state of the Maunder Minimum in solar variability. Late 20th-century West Antarctic coastal temperatures are the highest in the record period, and East Antarctic coastal temperatures close to the lowest. Since AD 1700, extratropical regions of the Southern Hemisphere have experienced significant climate variability coincident with changes in both solar variability and greenhouse gase

    Drilling operations for the South Pole Ice Core (SPICEcore) project

    Get PDF
    Over the course of the 2014/15 and 2015/16 austral summer seasons, the South Pole Ice Core project recovered a 1751 m deep ice core at the South Pole. This core provided a high-resolution record of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. The drilling and core processing were completed using the new US Intermediate Depth Drill system, which was designed and built by the US Ice Drilling Program at the University of Wisconsin–Madison. In this paper, we present and discuss the setup, operation, and performance of the drill system

    High-precision Dating of Volcanic Events (A.D. 1301–1995) Using Ice Cores from Law Dome, Antarctica

    Get PDF
    A record of volcanic activity over the period A.D. 1301–1995 has been extracted from three Law Dome ice cores (East Antarctica). The record dating is unambiguous at the annual level from A.D. 1807 to 1995 and has an uncertainty of ±1 year at A.D. 1301. Signals from 20 eruptions are preserved in the record, including those of two unknown eruptions with acid deposition beginning in A.D. 1810.8 and A.D. 1685.8. The beginning of the ice core signal from the A.D. 1815 Tambora eruption is observed in the austral summer of A.D. 1816/1817. The mean observed stratospheric transport and deposition time to Law Dome from the eruption site is 1.5 years (σ = 0.6 years) from 11 well-dated eruptions. The largest eruption observed in the Law Dome record has its maximum in A.D. 1460 with volcanic sulfate deposition beginning in the austral winter of A.D. 1459. This event is also observed in other ice core records and is attributed to the volcano Kuwae, with an eruption date in the range A.D. 1455.9–1459.9 if all sources of error are considered. This is at least three years later than the date previously ascribed by dendrochronological and historical studies

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Comprehensive Record of Volcanic Eruptions in the Holocene (11,000 years) From the WAIS Divide, Antarctica Ice Core

    Get PDF
    A comprehensive record (WHV2020) of explosive volcanic eruptions in the last 11,000 years is reconstructed from the West Antarctica Ice Sheet Divide deep ice core (WDC). The chronological list of 426 large volcanic eruptions in the Southern Hemisphere and the low latitudes during the Holocene are of the highest quality of all volcanic records from ice cores, owing to the high-resolution chemical measurement of the ice core and the exceptionally accurate WDC timescale. No apparent trend is found in the frequency (number of eruptions per millennium) of volcanic eruptions, and the number of eruptions in the most recent millennium (1,000–2,000 CE) is only slightly higher than the average in the last 11 millennia. The atmospheric aerosol mass loading of climate-impacting sulfur, estimated from measured volcanic sulfate deposition, is dominated by explosive eruptions with extraordinarily high sulfur mass loading. Signals of three major volcanic eruptions are detected in the second half of the 17th century (1700–1600) BCE when the Thera volcano in the eastern Mediterranean was suspected to have erupted; the fact that these signals are synchronous with three volcanic eruptions detected in Greenland ice cores suggests that these are likely eruptions in the low latitudes and none should be attributed exclusively to Thera. A number of eruptions with very high sulfur mass loading took place shortly before and during an early Holocene climatic episode, the so-called 8.2 ka event, and are speculated to have contributed to the initiation and magnitude of the cold event

    Core handling, transportation and processing for the South Pole ice core (SPICEcore) project

    Get PDF
    An intermediate-depth (1751 m) ice core was drilled at the South Pole between 2014 and 2016 using the newly designed US Intermediate Depth Drill. The South Pole ice core is the highest-resolution interior East Antarctic ice core record that extends into the glacial period. The methods used at the South Pole to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the National Science Foundation Ice Core Facility (NSF-ICF), and the methods used to process and sample the ice at the NSF-ICF are described. The South Pole ice core exhibited minimal brittle ice, which was likely due to site characteristics and, to a lesser extent, to drill technology and core handling procedures

    State of the Antarctic and Southern Ocean Climate System

    Get PDF
    This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between ∼6000 and 5000 years ago and since 1200–1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A.D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4° ± 1°C, and sea ice extent will decrease by ∼30%. Ice sheet models are not yet adequate enough to answer pressing questions about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth\u27s climate and oceans
    • …
    corecore