454 research outputs found
Fermentation Volume Studies for Red Wine Experimentation
Experimental vinification is often used to evaluate changes in viticultural and oenological practices inresearch trials. Microvinification procedures are used to overcome constraints that make standardisedcomparisons in commercial wineries difficult. Prior to 2009, a dedicated micro-winery research facilityin northern Tasmania used conventional 12 L volume ferments that provided sufficient wine for bothsensory and chemical analysis. Since then, much smaller ferment volumes of 1.5 L and of 250 mL have beenintroduced, and these provide a sufficient sample size for the chemical analysis of phenolic components inthe wine. This study reports a comparison of the phenolic attributes of Pinot Noir wines in a replicated trialusing must weights of 0.2, 1.0 and 10 kg fermented in vessels of volume 250 mL, 1.5 L and 20 L respectively.Using the same parcel of fruit, a single larger ferment of 330 kg and a vessel volume of 780 L was conductedconcurrently. At bottling, six weeks after the end of fermentation, there was no significant difference inthe phenolic composition of the wine made from grape musts with a mass of 0.2, 1.0 or 10 kilograms in thereplicated trial, and the results were consistent with those for the 330 kg ferment size. We therefore haveconfidence in using small micro-scale fermenters, which greatly enhance research capability
An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions
We present a new, easy, and elementary proof of Jensen's Theorem on the
uniqueness of infinity harmonic functions. The idea is to pass to a finite
difference equation by taking maximums and minimums over small balls.Comment: 4 pages; comments added, proof simplifie
Mirror Symmetry and Other Miracles in Superstring Theory
The dominance of string theory in the research landscape of quantum gravity
physics (despite any direct experimental evidence) can, I think, be justified
in a variety of ways. Here I focus on an argument from mathematical fertility,
broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many
string theorists in fact espouse. String theory leads to many surprising,
useful, and well-confirmed mathematical 'predictions' - here I focus on mirror
symmetry. These predictions are made on the basis of general physical
principles entering into string theory. The success of the mathematical
predictions are then seen as evidence for framework that generated them. I
attempt to defend this argument, but there are nonetheless some serious
objections to be faced. These objections can only be evaded at a high
(philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty
Years Of String Theory: Reflecting On the Foundations" (edited by G. `t
Hooft, E. Verlinde, D. Dieks and S. de Haro)
The characterisation of subjective cognitive decline
A growing awareness about brain health and Alzheimer's disease in the general population is leading to an increasing number of cognitively unimpaired individuals, who are concerned that they have reduced cognitive function, to approach the medical system for help. The term subjective cognitive decline (SCD) was conceived in 2014 to describe this condition. Epidemiological data provide evidence that the risk for mild cognitive impairment and dementia is increased in individuals with SCD. However, the majority of individuals with SCD will not show progressive cognitive decline. An individually tailored diagnostic process might be reasonable to identify or exclude underlying medical conditions in an individual with SCD who actively seeks medical help. An increasing number of studies are investigating the link between SCD and the very early stages of Alzheimer's disease and other neurodegenerative diseases
Identifying effective approaches for monitoring national natural capital for policy use
In order to effectively manage natural resources at national scales national decision makers require data on the natural capital which supports the delivery of ecosystem services (ES). Key data sources used for the provision of national natural capital metrics include Satellite Remote Sensing (SRS), which provides information on land cover at an increasing range of resolutions, and field survey, which can provide very high resolution data on ecosystem components, but is constrained in its potential coverage by resource requirements.
Here we combine spatially representative field data from a historic national survey of Great Britain (Countryside Survey (CS)) with concurrent low resolution SRS data land cover map within modelling frameworks to produce national natural capital metrics.
We present three examples of natural capital metrics; top soil carbon, headwater stream quality and nectar species plant richness which show how highly resolved, but spatially representative field data can be used to significantly enhance the potential of low resolution SRS land cover data for providing national spatial data on natural capital metrics which have been linked to ecosystem services (ES). We discuss the role of such metrics in evaluations of ecosystem service provision and areas of further development to improve their utility for stakeholders
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Subjective Cognitive Decline in Older Adults: An Overview of Self-Report Measures Used Across 19 International Research Studies
Research increasingly suggests that subjective cognitive decline (SCD) in older adults, in the absence of objective cognitive dysfunction or depression, may be a harbinger of non-normative cognitive decline and eventual progression to dementia. Little is known, however, about the key features of self-report measures currently used to assess SCD. The Subjective Cognitive Decline Initiative (SCD-I) Working Group is an international consortium established to develop a conceptual framework and research criteria for SCD (Jessen et al., 2014, Alzheimers Dement 10, 844-852). In the current study we systematically compared cognitive self-report items used by 19 SCD-I Working Group studies, representing 8 countries and 5 languages. We identified 34 self-report measures comprising 640 cognitive self-report items. There was little overlap among measures- approximately 75% of measures were used by only one study. Wide variation existed in response options and item content. Items pertaining to the memory domain predominated, accounting for about 60% of items surveyed, followed by executive function and attention, with 16% and 11% of the items, respectively. Items relating to memory for the names of people and the placement of common objects were represented on the greatest percentage of measures (56% each). Working group members reported that instrument selection decisions were often based on practical considerations beyond the study of SCD specifically, such as availability and brevity of measures. Results document the heterogeneity of approaches across studies to the emerging construct of SCD. We offer preliminary recommendations for instrument selection and future research directions including identifying items and measure formats associated with important clinical outcome
- …