99 research outputs found

    Cannabinoid CB1 receptor antagonism markedly increases dopamine receptor-mediated stereotypies

    Get PDF
    The contribution of the endocannabinoid system to dopamine-mediated disorganized behavior in schizophrenia is discussed. We used a model of concurrent stimulation of dopamine D1 and D2 receptors to evaluate the role of this system in dopamine-mediated stereotypies measured in a hole-board test. Pretreatment with the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A; 1 mg/kg) potentiated stereotyped behavior induced by coadministration of the dopamine D1 receptor agonist SKF 38393 (0.05, 0.1 and 1 mg/kg) and the dopamine D2 receptor agonist quinpirole (0.25 mg/kg). Thus, the endocannabinoid system acts as a brake for abnormal behavior associated with dopaminergic overactivation. © 2007 Elsevier B.V. All rights reserved.Peer Reviewe

    The Linkages Between Photosynthesis, Productivity, Growth and Biomass in Lowland Amazonian Forests

    Get PDF
    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling

    Datos geofísicos y evolución sedimentaria de la Depresión de la Janda (Cádiz)

    Get PDF
    La Janda lake is located ¡rito a tectonic graben filled by Pleistocene and Holocene fluvio-marine sediments. Geophysical survey consisting on Electric-logs and seismic refraction profiles aimed to determining the thickness of Quaternary sediments infilling the graben. Nevertheless, the results are significantly distorted by a saline aquifer that occupies most of the sedimentary filling. In any case it is possible to identify an assymetric subsident area reaching up to 300 m depth, characterised by very low apparent resistivities (1.5-2.4 W/m). This thick geoelectrical unit can be preliminary subdivided into 3 different subunits here called A, 67, B2, characterised by resistivity differences. The shallow 4-6 m thick Unit A consists of a thin lacustrine and alluvial day and silts of Holocene age easily recognized in seismic refraction profiles and drill cores. Unit B can be separated in two subunits; Both are saturated in brackish or saline waters; B1 is a 20-40 m thick unit that thins northward and correspond to the Plio-Pleistocene, B2 is a slightly more resistive unit that extends from this depth to 352 m and corresponds to deeply weathered mio-pliocene sandstones. The upper part of Sub-unit 87 correspond to estuarine sands recorded in a previous core which deposition finishes at ca. 3810 cal BP. A sharp normal fault limits the southern part of La Janda assymetric grabenPeer reviewe

    Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change

    Get PDF
    Understanding how changes in climate will affect terrestrial ecosystems is particularly important in tropical forest regions, which store large amounts of carbon and exert important feedbacks onto regional and global climates. By combining multiple types of observations with a state-of-the-art terrestrial ecosystem model, we demonstrate that the sensitivity of tropical forests to changes in climate is dependent on the length of the dry season and soil type, but also, importantly, on the dynamics of individual-level competition within plant canopies. These interactions result in ecosystems that are more sensitive to changes in climate than has been predicted by traditional models but that transition from one ecosystem type to another in a continuous, non–tipping-point manner.Organismic and Evolutionary Biolog

    Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation.:Seasonal trends of Amazonian forests.

    Get PDF
    The seasonality of solar irradiance and precipitation may regulate seasonal variations in tropical forests carbon cycling. Controversy remains over their importance as drivers of seasonal dynamics of net primary productivity in tropical forests. We use ground data from nine lowland Amazonian forest plots collected over 3 years to quantify the monthly primary productivity (NPP) of leaves, reproductive material, woody material, and fine roots over an annual cycle. We distinguish between forests that do not experience substantial seasonal moisture stress (“humid sites”) and forests that experience a stronger dry season (“dry sites”). We find that forests from both precipitation regimes maximize leaf NPP over the drier season, with a peak in production in August at both humid (mean 0.39 ± 0.03 Mg C ha−1 month−1 in July, n = 4) and dry sites (mean 0.49 ± 0.03 Mg C ha−1 month−1 in September, n = 8). We identify two distinct seasonal carbon allocation patterns (the allocation of NPP to a specific organ such as wood leaves or fine roots divided by total NPP). The forests monitored in the present study show evidence of either (i) constant allocation to roots and a seasonal trade-off between leaf and woody material or (ii) constant allocation to wood and a seasonal trade-off between roots and leaves. Finally, we find strong evidence of synchronized flowering at the end of the dry season in both precipitation regimes. Flower production reaches a maximum of 0.047 ± 0.013 and 0.031 ± 0.004 Mg C ha−1 month−1 in November, in humid and dry sites, respectively. Fruitfall production was staggered throughout the year, probably reflecting the high variation in varying times to development and loss of fruit among species

    Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3

    Get PDF
    Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.Funding: This study has been supported: (i) by MICINN (SAF2009-11847 and SAF2015-68580-C2-1-R), CIBERNED (CB06/05/0089) and “Fundación Eugenio Rodríguez Pascual”, to JFR; (ii) by the Research and Education Component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin, to CJH; and (iii) by Fundação para a Ciência e Tecnologia through the project POCI-01-0145-FEDER-016818 (PTDC/NEU-NMC/3648/2014) and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), to PM. Carmen Rodríguez-Cueto was a predoctoral fellow supported by FPI Program-Ministry of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Large trees drive forest aboveground biomass variation in moist lowland forests accross the tropics

    Get PDF
    peer reviewedaudience: researcher, professional, studentAim Large trees (d.b.h. 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore which intrinsic (species trait) and extrinsic (environment) variables are associated with the density of large trees and forest biomass at continental and pan-tropical scales. Location Pan-tropical. Methods Aboveground biomass (AGB) was calculated for 120 intact lowland moist forest locations. Linear regression was used to calculate variation in AGB explained by the density of large trees. Akaike information criterion weights (AICcwi) were used to calculate averaged correlation coefficients for all possible multiple regression models between AGB/density of large trees and environmental and species trait variables correcting for spatial autocorrelation. Results Density of large trees explained c. 70% of the variation in pan-tropical AGB and was also responsible for significantly lower AGB in Neotropical [287.8 (mean) 105.0 (SD) Mg ha-1] versus Palaeotropical forests (Africa 418.3 91.8 Mg ha-1; Asia 393.3 109.3 Mg ha-1). Pan-tropical variation in density of large trees and AGB was associated with soil coarseness (negative), soil fertility (positive), community wood density (positive) and dominance of wind dispersed species (positive), temperature in the coldest month (negative), temperature in the warmest month (negative) and rainfall in the wettest month (positive), but results were not always consistent among continents. Main conclusions Density of large trees and AGB were significantly associated with climatic variables, indicating that climate change will affect tropical forest biomass storage. Species trait composition will interact with these future biomass changes as they are also affected by a warmer climate. Given the importance of large trees for variation in AGB across the tropics, and their sensitivity to climate change, we emphasize the need for in-depth analyses of the community dynamics of large trees

    The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia

    Get PDF
    Background: The forests of western Amazonia are known to be more dynamic that the better-studied forests of eastern Amazonia, but there has been no comprehensive description of the carbon cycle of a western Amazonian forest. Aims: We present the carbon budget of two forest plots in Tambopata in south-eastern Peru, western Amazonia. In particular, we present, for the first time, the seasonal variation in the detailed carbon budget of a tropical forest. Methods: We measured the major components of net primary production (NPP) and total autotrophic respiration over 3-6 years. Results: The NPP for the two plots was 15.1 ± 0.8 and 14.2 ± 1.0 Mg C ha −1 year −1 , the gross primary productivity (GPP) was 35.5 ± 3.6 and 34.5 ± 3.5 Mg C ha −1 year −1 , and the carbon use efficiency (CUE) was 0.42 ± 0.05 and 0.41 ± 0.05. NPP and CUE showed a large degree of seasonality. Conclusions: The two plots were similar in carbon cycling characteristics despite the different soils, the most notable difference being high allocation of NPP to canopy and low allocation to fine roots in the Holocene floodplain plot. The timing of the minima in the wet-dry transition suggests they are driven by phenological rhythms rather than being driven directly by water stress. When compared with results from forests on infertile forests in humid lowland eastern Amazonia, the plots have slightly higher GPP, but similar patterns of CUE and carbon allocation

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Funding: Data collection was largely funded by the UK Natural Environment Research Council (NERC) project TREMOR (NE/N004655/1) to D.G., E.G. and O.P., with further funds from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001) to J.V.T. and a University of Leeds Climate Research Bursary Fund to J.V.T. D.G., E.G. and O.P. acknowledge further support from a NERC-funded consortium award (ARBOLES, NE/S011811/1). This paper is an outcome of J.V.T.’s doctoral thesis, which was sponsored by CAPES (GDE 99999.001293/2015-00). J.V.T. was previously supported by the NERC-funded ARBOLES project (NE/S011811/1) and is supported at present by the Swedish Research Council Vetenskapsrådet (grant no. 2019-03758 to R.M.). E.G., O.P. and D.G. acknowledge support from NERC-funded BIORED grant (NE/N012542/1). O.P. acknowledges support from an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. R.S.O. was supported by a CNPq productivity scholarship, the São Paulo Research Foundation (FAPESP-Microsoft 11/52072-0) and the US Department of Energy, project GoAmazon (FAPESP 2013/50531-2). M.M. acknowledges support from MINECO FUN2FUN (CGL2013-46808-R) and DRESS (CGL2017-89149-C2-1-R). C.S.-M., F.B.V. and P.R.L.B. were financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001). C.S.-M. received a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq 140353/2017-8) and CAPES (science without borders 88881.135316/2016-01). Y.M. acknowledges the Gordon and Betty Moore Foundation and ERC Advanced Investigator Grant (GEM-TRAITS, 321131) for supporting the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk), within which some of the field sites (KEN, TAM and ALP) are nested. The authors thank Brazil–USA Collaborative Research GoAmazon DOE-FAPESP-FAPEAM (FAPESP 2013/50533-5 to L.A.) and National Science Foundation (award DEB-1753973 to L. Alves). They thank Serrapilheira Serra-1709-18983 (to M.H.) and CNPq-PELD/POPA-441443/2016-8 (to L.G.) (P.I. Albertina Lima). They thank all the colleagues and grants mentioned elsewhere [8,36] that established, identified and measured the Amazon forest plots in the RAINFOR network analysed here. The authors particularly thank J. Lyod, S. Almeida, F. Brown, B. Vicenti, N. Silva and L. Alves. This work is an outcome approved Research Project no. 19 from ForestPlots.net, a collaborative initiative developed at the University of Leeds that unites researchers and the monitoring of their permanent plots from the world’s tropical forests [61]. The authros thank A. Levesley, K. Melgaço Ladvocat and G. Pickavance for ForestPlots.net management. They thank Y. Wang and J. Baker, respectively, for their help with the map and with the climatic data. The authors acknowledge the invaluable help of M. Brum for kindly providing the comparison of vulnerability curves based on PAD and on PLC shown in this manuscript. They thank J. Martinez-Vilalta for his comments on an early version of this manuscript. The authors also thank V. Hilares and the Asociación para la Investigación y Desarrollo Integral (AIDER, Puerto Maldonado, Peru); V. Saldaña and Instituto de Investigaciones de la Amazonía Peruana (IIAP) for local field campaign support in Peru; E. Chavez and Noel Kempff Natural History Museum for local field campaign support in Bolivia; ICMBio, INPA/NAPPA/LBA COOMFLONA (Cooperativa mista da Flona Tapajós) and T. I. Bragança-Marituba for the research support.Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.Publisher PDFPeer reviewe

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate
    corecore