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Key Points 

 Field data confirm Amazon forests maximise leaf production during dry season. 

 Trade-offs in carbon allocation determine seasonality of NPP components. 

 Consistent reproductive seasonality across contrasting precipitation regimes. 

 

Abstract  

The seasonality of solar irradiance and precipitation may regulate seasonal variations in tropical 

forests carbon cycling. Controversy remains over their importance as drivers of seasonal dynamics 

of net primary productivity in tropical forests. We use ground data from nine lowland Amazonian 

forest plots collected over three years to quantify the monthly NPP of leaves, reproductive 

material, woody material, and fine roots over an annual cycle. We distinguish between forests that 

do not experience substantial seasonal moisture stress (“humid sites”) and forests that experience a 

stronger dry season (“dry sites”).  We find that forests from both precipitation regimes maximise 

leaf NPP over the drier season, with a peak in production in August at both humid (mean 0.39 ± 

0.03 Mg C ha
-1

 mo
-1

 in July, n = 4) and dry sites (mean 0.49 ±0.03 Mg C ha
-1

 mo
-1

 in September, n 

= 8). We identify two distinct seasonal carbon allocation patterns (the allocation of NPP to a 

specific organ such as wood leaves or fine roots divided by total NPP). The forests monitored in 

the present study show evidence of either: (i) constant allocation to roots and a seasonal trade-off 

between leaf and woody material; or (ii) constant allocation to wood and a seasonal trade-off 

between roots and leaves. Finally, we find strong evidence of synchronised flowering at the end of 

the dry season in both precipitation regimes. Flower production reaches a maximum of 0.047 ± 
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0.013 and 0.031 ± 0.004 Mg C ha
-1

 mo
-1

 in November, in humid and dry sites respectively. 

Fruitfall production was staggered throughout the year, probably reflecting the high variation in 

varying times to development and loss of fruit amongst species.  

  

Keywords: Net primary productivity, daily insolation, precipitation, seasonality, phenology, 

canopy, leaf, flower, fruit, wood, roots. 

 

1. Introduction 

Controversy remains over the roles of solar irradiance and precipitation as the main drivers of 

seasonal dynamics of the net primary productivity (NPP) of tropical forests. Whereas a 

relationship between seasonal peaks in precipitation and wood productivity is relatively well 

established for Amazonian forests [Brienen and Zuidema, 2005; Rowland et al., 2013; Wagner et 

al., 2012; Hofhansel et al., 2015], the predominant drivers of the seasonal production of leaf and 

reproductive organs remain unclear. Systematic ground-based monitoring of the major 

components of biomass productivity is needed to understand the trends governing their 

seasonality.  

Apparent seasonality of leaf phenology has been observed from optical remote sensing data 

[Huete, 2006, Myreni, 2007, Saleska, 2007, Brando, 2010, Wu et al., 2016] and, to a lesser extent, 

from ground-based collection of leaf litter from litterfall traps [Chave et al., 2010]. The former 

produced divergent results and has generated controversies around the validity and interpretation 

of seasonal variation in remotely sensed metrics in moist tropical forests, leading to ongoing 

controversy over the proposed paradigm of light-limited forests responding to a surge of solar 

irradiance during the dry season [Morton et al., 2014]. Litterfall studies provide evidence of 
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positive correlations between litterfall and rainfall seasonality, but it remains unclear how timing 

of leaf litterfall is related to the timing of canopy leaf production.  

Much of the literature and debate on the seasonality of Amazon canopy leaf production has 

implicitly assumed a positive relationship between canopy “greening” and overall ecosystem 

productivity. However, a question that remains unresolved is the extent to which a seasonal 

increase in canopy leaf production reflects an increase in overall productivity, or alternatively 

simply a shift in carbon allocation among roots, wood, the canopy, and non-structural 

carbohydrate storage pools. A recent study in Bolivia has demonstrated that allocation shifts are 

more important than overall changes in productivity in explaining interannual variability in 

canopy, wood and fine root growth rates [Doughty et al. 2014a]. Here, we investigate the physical 

drivers of carbon allocation across a wider range of Amazonian sites, test if Amazon rainforests 

may be separated into radiation-controlled and precipitation-controlled forests, and explore the 

arguments from an evolutionary perspective. 

A third set of relevant questions revolve around the nature and timing of reproductive phenology 

in tropical forests, how this relates to the overall seasonality of climate and productivity, and the 

amount of productivity invested in reproduction.  The links between flowering phenology, weather 

parameters (solar irradiance, rainfall, temperature), and an the potential role of an intrinsic 

biological clock developed as an evolutionary response to biotic interactions (pollination, seed 

dispersal) remain to be deciphered [Lieberman, 1982; Wright and van Schaik, 1994; Wright and 

Calderon, 1995; Leigh, 1999; Brochert et al., 2002, 2005; Calle et al., 2010; Pau et al., 2013]. 

All these interlinked questions can potentially be examined by a multi-year dataset comprising 

measurements of all the major components of forest NPP at seasonal resolution, and across 

contrasting sites in Amazonia. Here we present such a dataset as a contribution to this debate, 

presenting data over three years from a network of one hectare permanent plots: the Global 
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Ecosystems Monitoring network (GEM, gem.tropicalforests.ox.ac.uk). Our analysis is focused on 

nine plots located in old growth intact Amazonian forests (Table 1). Forest plots were categorised 

into two precipitation regimes: sites that did not experience a strong dry season (termed “humid 

sites” for the purpose of this paper), and those that experienced a dry season over several months 

(termed “dry sites”). 

 

In this study, we ask the following questions:  

(1) Is there field-based evidence of a peak in the net primary productivity of leaves (NPP Leaves) 

during the dry season, as suggested by existing optical remote sensing observations?  

(2) How does the net primary productivity of flowers (NPP Flowers), fruit (NPP Fruit), above-ground 

coarse woody material (NPPACW), and fine roots (NPP Fine roots) vary over the seasonal cycle in 

humid and dry sites?   

(3) Is there evidence of clear trade-offs in carbon allocation driving seasonal variation of woody 

growth, canopy production and fine root production? If so, how do these trends vary across sites? 

 

2. Methods  

2.1. Site description 

Our study region is across the Amazon forest biome. Nine 1 ha long term intensive carbon 

monitoring plots were established in lowland Amazonia as part of the Global Ecosystems 

Monitoring Network (GEM) of intensive plots, and nested with the RAINFOR Amazon Forest 

Inventory network (RAINFOR) of 1 ha plots. Two plots were in the Tambopata reserve, 
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Tambopata Province, Department of Madre de Dios, Peru (RAINFOR codes TAM-05, TAM-06); 

two plots in the province of Maynas, on the Allpahuayo-Mishana National Reserve (ALP-01, 

ALP-30); two plots on private property at the Hacienda Kenia in Guarayos Province, Santa Cruz, 

Bolivia (KEN-01, KEN-02); two plots in the Fazenda Tanguro, Mato Grosso State, Brazil (TAN-

05, TAN-06); and three plots in Caxiuanã National Forest Reserve, Pará in the eastern Brazilian 

Amazon (CAX-03, CAX-06, CAX-08). Several plots have been established for over eight years. 

However, we chose to include data collected over the period 2009 - 2012 for this analysis, to 

ensure the same data collection period between plots. All plots were selected in areas with 

relatively homogeneous stand structure. All had closed canopies without any large gaps. Forest 

composition varied across the sites, both across the region and between neighbouring plots 

because of edaphic or disturbance history factors.  

 

Site classification - Sites were classified into dry and humid sites, according to estimates of 

maximum climatological water deficit (MCWD), and following the classification described in 

Malhi et al. [2015]. Our classification differs from that of Doughty et al. [2015] in one way: 

whereas Doughty et al. [2015] classify KEN-01 as wet forest, based on species composition 

(Amazonian tree species vs Chiquitano dry forest species) and edaphic characteristics (deep vs 

shallow soils), we classify this site as dry forest, based on mean MCWD, as Kenia is on the 

extremely dry end of the climate spectrum of Amazonia. Both plots in the Kenia site experience 

identical climate and are 1 km apart – the difference in species composition is driven by soil depth 

affecting dry season water supply. The distinction into humid and dry sites made by Doughty et al. 

[2015] was relevant in the context of a study on drought effects. In our context of exploring 

seasonal variation of NPP, both Kenia plots experience an extreme dry season and should be 

classified together, 
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2.2. Weather 

Time series for solar irradiance (W m
-2

), air temperature (˚C), relative humidity (%) and 

precipitation (mm mo
-1

) were collected from an Automatic Weather Stations (AWS, Campbell 

Scientific) located ca. 1 km from each experimental site. These data were quality controlled to 

remove outliers, and monthly time series were gap-filled as described in da Costa et al. [2014], 

Doughty et al. [2014c], Malhi et al. [2014], del Aguila-Pasquel et al. [2014], and Araujo-

Murakami et al. [2014]. 

 

2.3. Net primary productivity 

All sites were monitored according to the Global Ecosystems Monitoring (GEM) network 

protocol. Methods are described in detail in the field manual available on the website: 

http://gem.tropicalforests.ox.ac.uk, as well as in a series of site-specific papers. da Costa et al. 

[2014], Doughty et al. [2014c], Malhi et al. [2014], del Aguila-Pasquel et al. [2014], and Araujo-

Murakami et al. [2014] provided comprehensive site descriptions and the complete carbon cycles 

for these sites (Table 1) [Malhi et al. 2015].  The protocol measures and sums all major 

components of NPP and Ra on monthly timescales in each 1 ha forest plot. The present paper 

focuses on the NPP components of these measurements. Recognizing that many of these 

measurements have potential systematic uncertainties, we assigned sampling or systematic 

uncertainties in our calculations of total NPP, Ra, GPP and CUE. Each measurement presented in 

the present paper has a rigorous error propagation presented in the series of site-specific papers 

cited above.  

 

http://gem.tropicalforests.ox.ac.uk/
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The GEM methodology has shown close agreement with independent eddy covariance data on 

annual timescales for both Ra and GPP [Malhi et al. 2009, Fenn et al. 2014]. The following 

paragraphs provide a brief description of the field methods used in the present study. We briefly  

discuss the potential biases accrued by each measurement. 

Above-ground coarse woody net primary productivity - We determined plot-level NPPACW using 

multiple censuses (2009, 2010, 2011) of the forest plots and three-monthly dendrometer band 

measurements (2009 - 2011). We completed tree censuses to determine the growth rate of existing 

surviving trees and the rate of recruitment of new trees. Data on diameter at breast height (dbh, 

using diameter tape) and tree height (using clinometer when possible, or a visual estimate) were 

recorded for all trees ≥ 10 cm dbh. Above-ground coarse woody biomass was calculated using the 

allometric equation of Chave et al. [2005] for tropical moist forests, employing data on diameter, 

height and wood density. 

 

AGB = 0.0509 × (ρ × dbh ×H)                                                                                                      (1) 

 

where AGB is above-ground biomass (kg), ρ is density of wood (g cm
-3

), dbh is diameter at breast 

height (cm), and H is height (m). Wood density was estimated for each species from a global 

database of tropical forest wood density [Chave et al., 2009; Zanne et al., 2009], ideally assigned 

to species, but to genus or family level where species identity or species-level wood-density data 

were not available. To convert biomass values into carbon, we assumed that dry ACW biomass is 

47.3% carbon, based on recent studies in lowland forests in Panama that included volatile carbon 

compounds not recorded by conventional dry assessment [Martin and Thomas, 2011]. For the few 

trees where height data were not available we estimated height by employing a plot-specific 

polynomial regression between dbh and height [Feldspauch et al., 2011].  Annual NPPACW was 

calculated as the sum of biomass increase of individual surviving trees between census intervals. 
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To determine seasonal variation in woody growth rates, we installed dendrometer bands in 2009 

on approximately 200 randomly selected trees in each plot (all trees in TAM-05 and TAM-06). 

The dendrometer bands were measured every three months with callipers. The dendrometer data 

were scaled up to 1 ha by using the annual full census data to determine the ratio of wood net 

primary productivity (NPPACW) of all trees over the NPPACW of dendrometer trees. This ratio 

provided a scaling factor that we applied to the dendrometer data, to estimate seasonal NPPACW 

for the entire plot (i.e. to include trees that had no dendrometers), with the implicit assumption that 

the productivity of the dendrometer trees is representative of the wider population.  

 

One concern is the effect of seasonal changes in hydraulics, the possible bias introduced by 

moisture expansion and shrinkage of the bark or xylem on tree growth seasonality.  To estimate 

the effect of moisture expansion on apparent tree growth during the wet season, Doughty et al. 

[2015] separated the trees with almost no annual tree growth (woody NPP <1 kg C ha
−1

 year
−1

) 

and quantified their apparent seasonal trends in diameter. For these slow or non-growing trees, we 

found a mean seasonal amplitude of apparent growth peaking in April and decreasing until 

October. For example, for our two Bolivian sites we estimated the seasonal effect of moisture 

expansion between March and November (the maximum and minimum) to be an apparent change 

of 0.08 Mg C ha
−1

 month
−1

 and 0.19 Mg C ha
−1

 month
−1

, although this may underestimate the 

effect, since faster growing trees tend to shrink more in the dry season, because they possess larger 

vessels [Rowland et al., 2014]. As the census interval was small (1 year) we did not apply a 

correction for trees that grow and die between census intervals without being recorded [Malhi et 

al., 2004]. We did not account for the wood productivity of lianas, although their leaf productivity 

is recorded by litterfall traps. 
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Litterfall - Canopy litterfall was collected in 25 0.25-m
2
 (50 × 50 cm) litter traps installed 1 m 

above the ground on each plot. Litterfall was collected every 15 days over a period of 18 or 24 

months between 2009 and 2011, split into different components (leaves, fruits, flowers, seeds, 

woody tissue, bromeliads, other epiphytes -non-vascular epiphytes, mosses, liverworts-, and 

unidentified fine debris), oven dried at 80ºC, and weighed. Annual estimates of leaf loss to 

herbivory were obtained from scans of litterfall, according to Metcalfe et al. [2013]. Seasonal 

variation of large palm leaf litter was not accounted for in the lowland plots, implying an 

underestimation of litterfall at the TAM-06 site in particular (Malhi et al. [2014])  

 

There are two potential seasonal biases in litterfall. First, decomposition of litter may increase 

during the wet season; this would imply that our measurements underestimate wet season litterfall, 

although collecting litterfall every 15 days ensures minimum loss by decomposition. Second, we 

do not correct litterfall data to account for seasonal leaf herbivory. On an annual timescale, 

Metcalfe et al. [2013] estimated an average canopy loss of 7% ± 0.5% in nine Andean and 

Amazonian plots, including Tambopata. Although we did not find clear seasonal trends for 

herbivory in our lowland Amazonian sites, Lieberman [1982], Aide [1988], and Givnish et al. 

[1999] estimated that insect activity increases in the wet season.  

 

Canopy productivity – Canopy litterfall is a good estimator of canopy productivity on annual or 

larger timescales. However, it represents the timing of canopy biomass loss, not biomass gain, and 

hence cannot record seasonal variation in canopy productivity. To overcome this issue, we 

combined data sets of canopy litterfall, canopy Leaf Area Index (LAI) [da Costa et al., 2014; 

Doughty et al., 2014c; Malhi et al., 2014; del Aguila-Pasquel et al., 2014; Araujo-Murakami et al., 
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2014], and Specific Leaf Area (SLA) [Salinas et al., 2011] to estimate the seasonal cycle of 

canopy net primary productivity (NPPCanopy) in each plot [Doughty and Goulden, 2008]: 

 

NPPCanopy = (ΔLAI / SLA) + litterfall                                                           (2) 

 

where ΔLAI is the change in LAI between months (m
2
 m

-2
), SLA is the mean specific leaf area 

(m
2
 g

-1
), and litterfall is total litterfall (g m

-2
).  We assume no difference in SLA in between 

mature and senescent leaves, and do not attempt to account for resorption of carbon in senescent 

leaves. Both these uncertainties are likely to be small. 

 

We estimated LAI using canopy images recorded with a digital camera and hemispherical lens and 

analysed with CAN-EYE software (http://www6.paca.inra.fr/can-eye). We estimate SLA by 

taking a subsample of fresh leaf litterfall, scanning each leaf to determine fresh leaf area, and then 

drying at 80°C and weighing the leaf to determine dry mass. SLA is fresh leaf area divided by dry 

leaf mass. Leaf area was calculated using image analysis software, Image J freeware 

(http://rsb.info.nih.gov/ij/).  NPPCanopy is estimated in g m
-2

. This method is purely based on a mass 

balance approach. We are providing estimates of changing stocks of litterfall over time, without 

making assumptions on leaf age. 

 

 Fine root productivity – We collected fine roots (< 5 mm diameter) from sixteen ingrowth cores  

(12 cm diameter, 30 cm depth) every three months from September 2009 to March 2011. Roots 

were manually removed from the ingrowth cores in four 10 min time steps and the trend of 

cumulative extraction over time vas used to predict root extraction beyond 40 min, as described in 

Metcalfe et al. [2006]. Root-free soil was then replaced in each ingrowth core, keeping the same 

bulk density of the undisturbed soil. Collected roots were thoroughly rinsed, oven dried at 80˚C to 

http://rsb.info.nih.gov/ij/
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constant mass, and weighed. Monthly NPPFine roots was estimated from the quantity of fine root 

mass produced in the three month interval since the last collection, allowing us to estimate 

seasonal fine root growth. While most ecological studies define fine roots as < 2 mm, we noted 

that a few roots between 2 and 5 mm also grow into our ingrowth cores. For pragmatic reasons we 

did not separate these out; these may account for a few percent of root biomass in our ingrowth 

cores. This definition of fine roots also maintains consistency with our other recent papers 

[Doughty et al. 2014a, Malhi et al. 2015, Doughty et al. 2015]. 

  

As in all carbon budget measurement protocols, the measurement of roots proved to be the most 

challenging. We report results from ingrowth cores as they have previously provided robust 

estimates of root productivity over seasonal and annual timescales. For example, Girardin et al. 

[2013] provide detailed comparisons and show excellent agreement of results obtained from 

ingrowth cores and rhizotrons in six GEM plots located in Andean and Amazonian forests, 

including the Tambopata plots presented here.  

Total net primary productivity. – NPP can be estimated as the sum of NPPACW, NPPCanopy, branch 

turnover (NPPBranchTurnover), NPPFine roots, coarse roots (NPPCoarse roots) and volatile organic 

compound production (NPPVOC). 

 

NPPAG = NPPACW + NPPCanopy + NPPBranchTurnover + NPPFine roots + NPPCoarseRoots + NPPVOC        (3) 

 

We obtained seasonal NPPACW estimates from the dendrometer band growth, and NPPCanopy 

values through the seasonal litterfall measurements coupled with seasonal variation in Leaf Area 

Index. Branch turnover and coarse root productivity are difficult to estimate at seasonal resolution 

[da Costa et al., 2014; Doughty et al., 2014c; Malhi et al., 2014; del Aguila-Pasquel et al., 2014; 

Araujo-Murakami et al., 2014] hence for the purpose of this paper, we concentrate on NPPACW, 
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NPPCanopy and NPPFine roots seasonality. Finally, we did not estimate the contribution of volatile 

organic carbon emission from vegetation, which was found to be a very minor contribution in 

lowland tropical forest ecosystems [Malhi et al., 2009]. 

 

The GEM protocol methodologies are used by many research groups globally, and in numerous 

published scientific studies. Each measurement incorporated in this paper is presented in detail in 

a series of five companion papers [da Costa et al., 2014; Doughty et al., 2014c; Malhi et al., 2014; 

del Aguila-Pasquel et al., 2014; Araujo-Murakami et al., 2014].  

Our estimates of total NPP is based on the summation of independent measurements (litterfall, 

tree growth, fine root production and branch fall). While some of these terms can carry substantial 

measurement and scaling uncertainties, the sampling uncertainties are independent for each 

measurement. Hence, some of these uncertainties potentially cancel each other out, reducing the 

overall uncertainty of the NPP, GPP and CUE estimates obtained using the GEM protocol. By 

contrast, an eddy covariance-based estimate of GPP is based on a single type of measurement (of 

net ecosystem exchange); hence any uncertainties in the method, such as underestimation of night-

time respiration in stable atmospheric conditions, can result in an equivalent uncertainty in the 

final estimate of GPP. Malhi et al. [2015] and Doughty et al. [2015] explore the measurement and 

scaling uncertainties associated with each measurement taken by the GEM carbon budget and 

argue that a carbon summation measurement comprised of multiple independent measurements 

may be more accurate and less error prone than an eddy covariance-based estimate comprised of 

one type of measurement. One key difference between a top down (eddy covariance) and bottom 

up (GEM summation method) approach is that the latter gives an estimate on an annual and 

seasonal scale, whilst the former provide insight at the hourly (or less) scale. 
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The only uncertainties we considered for NPP values are those associated with sampling. We do 

not attempt to estimate systematic uncertainties, but note that in the context of this paper the key 

systematic biases of concern to us would be those which show a strong seasonal variation. 

Analytical techniques - We used these data to describe the seasonal variation of NPPCanopy, 

NPPACW and NPPFine roots. All uncertainty estimates are given as standard deviation (± SD).  The 

propagated uncertainty for each variable described in the GEM protocol, including NPP, gross 

primary productivity (GPP), and carbon use efficiency (CUE), are provided in the five companion 

papers cited above. In the present paper, we focus on inter-annual (temporal) and inter-plot (i.e. 

spatial) variability of each NPP component. To estimate inter-annual variation, we estimate the 

inter-annual variation over three or (for Tambopata) four years for each plot, and provide the 

average of these variations for all plots: this is the typical inter-annual variation of a humid or dry 

plot. We estimate inter-site variation by calculating the SD of each NPP component for aggregated 

humid or dry plots. All temporal variability is presented as grey ribbons and the variability across 

plots is presented as error bars centred on the mean. 

 

Ternary diagrams were used to explore trends in allocation of productivity over seasonal cycles in 

humid and dry forest sites.  We explore the seasonal variance in allocation to each component 

using a ternary diagram of the variance of NPP allocation. A normalised allocation variance 

parameter, NVar(x) was calculated as: 

 

NVar(x)  = var(x) / (var(x) + var(y) + var(z))                                                                             (4) 

Where var(x) is the variance of the allocation coefficient of a variable x, and y and z are the other 

two allocation terms.. 
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We explored the seasonal amplitude of each abiotic and biotic parameter. Seasonal amplitude was 

estimated by subtracting the minimum 3 months moving average from the maximum moving 

average recorded. Repeated-measures ANOVA was used to assess the significance of seasonal 

increases in productivity. All statistical analyses were performed with the R version 2.9.0 

statistical package [Chambers, 2008]. The R scripts used to analyse the data are available on 

github.com/oxfordecosystemslab. As we are continually improving these scripts, the values we 

present may differ slightly between companion papers. All changes in the code since May 2014 

are available online. 

 

3. Results 

3.1. Seasonal trends in weather 

3.1.1. Solar irradiance 

At all sites, solar irradiance increased towards the end of the dry season, reaching a peak during 

the dry to wet transition season, between August and October (Figure 1a). In most sites, light 

availability was above 150 W m
-2

 throughout the year. Allpahuayo, the cloudiest and wettest site, 

in NE Amazonia, experienced a more pronounced seasonality of solar irradiance, with values only 

increasing above 150 W m
-2

 between August and December (Figure 1a).  

3.1.2. Precipitation 

Mean monthly rainfall over the study period showed consistent seasonal trends at all sites, peaking 

between December and March. The dry season is defined as the period when potential 

evapotranspiration exceeds rainfall, typically when rainfall reaches values below 100 mm mo
-1

. 

Humid sites do not experience a prolonged or intense dry season. The monthly precipitation of 

Allpahuayo exceeds 100 mm mo
-1 

throughout the year. Caxiuanã in NE Amazonia experiences a 
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long but mild dry season from August to November, when precipitation averages 59 mm mo
-1

. On 

average, dry sites experience a significant (t = 5.73, df = 4, p-value < 0.0005) prolonged dry 

season from May to September (Figure 1b), although Caxiuanã experiences a dry season later in 

the year, from June to November (sup. mat. Figure S1). 

 

3.1.3. Relative humidity 

The seasonal amplitude of mean monthly relative humidity over the study period was strongest in 

Tanguro and Kenia in the southern limit of Amazonia. All other sites experienced little 

(Tambopata) to no (Allpahuayo, Caxiuanã) seasonal variation in relative humidity (Figure 1d). 

3.1.4 Air temperature 

Mean monthly temperature over the study period showed no consistent seasonal trends across the 

precipitation gradient (Figure 1c). 

 

3.2. Seasonal trends in net primary productivity 

3.2.1. Canopy productivity 

The mean annual value for canopy Net Primary Productivity (NPPCanopy) is 3.89 ± 0.10 Mg C ha
-1

 

yr
-1

 (n = 8) for humid sites, and 4.50 ± 0.12 Mg C ha
-1

 yr
-1

 (n = 4) for dry sites. Total litterfall 

includes all canopy components, as described above. 

 

There is a consistent surge in NPPCanopy during the dry season in both precipitation regimes. 

NPPCanopy reaches a maximum at the start of the dry season (May) in dry sites and at the height of 

the dry season (August) in humid and dry sites. The seasonal increase in NPPCanopy is significant in 
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both humid (p-value < 0.005) and dry (p-value < 0.0005) sites. Mean monthly values over the 

study period range from 0.48 ± 0.17 Mg C ha
-1

 mo
-1

 to 0.20 ± 0.07 Mg C ha
-1

 mo
 -1 

in humid sites 

and from 0.56 ± 0.23 Mg C ha
-1

 mo
 -1

 to 0.22 ± 0.05 Mg C ha
-1

 mo
 -1 

in dry sites (Figure 3b). 

 

 Canopy litterfall is produced throughout the year and increases at the onset of the dry season 

(August), coinciding with the peak in NPPCanopy. Seasonality in LAI was not detected in these sites 

(not shown). LAI above or close to 5 will have some degree of saturation in both LAI 2000 and 

the photos, thus it is possible that we are not able to detect the seasonal trends in LAI in the less 

seasonal forests. As canopy production, which comprises (leaf, flower, fruit, twig, and unidentified 

material) is dominated by leaf productivity, we assume that the seasonal trends of canopy 

productivity are also those of leaf productivity. 

3.2.2. Flower and fruit productivity 

Flower - Annual estimates of flower net primary productivity (NPPFlower) show no significant 

differences between humid and dry sites (p-value > 0.5). The mean annual value for NPPFlower is 

0.14 ± 0.01 Mg C ha
-1

 yr
-1

 (n = 8) for humid sites, and 0.09 ± 0.007 Mg C ha
-1

 yr
-1

 (n = 4) for dry 

sites. 

 

NPPFlower show strong seasonality in both humid and dry sites. In humid sites, production 

increased from a negligible amount in July (mid dry season) to a maximum of 0.04 ± 0.03 Mg C 

ha
-1

 mo
-1

 in November (early wet season), and decreased sharply over the following month. 

Assuming that the peak in flower litterfall captures a surge in NPPFlower over the previous month 

[Girardin et al., 2014], the peak in NPPCanopy  (dominated by leaf NPP) precedes the synchronised 

flowering event by two months. In dry sites, flowers were also produced in negligible amounts 
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thought the year, increasing significantly (p-value<0.0005) at the end of the dry season 

(September). The peak in flower production coincides with the peak in NPPCanopy (Figure 3b). 

Fruit - Annual estimates of fruit net primary productivity (NPPFruit) showed no significant 

difference between the two precipitation regimes (p-value = 0.20). The mean annual value for 

NPPFruit is 0.23 ± 0.007 Mg C ha
-1

 yr
-1

 (n = 8) for humid sites, and 0.18 ± 0.01 Mg C ha
-1

 yr
-1

 (n = 

4) for dry sites.  

 

We found a staggered fruiting phenology in both forest types. Assuming that the seasonality of 

fruit litterfall is a good proxy for the seasonality of NPPFruit, we observe a bimodal peak in fruit 

production in humid and dry sites. Values range from 0.03 ± 0.05 Mg C ha
-1

 yr
-1

 to 0.01 ± 0.01 

Mg C ha
-1

 yr
-1 

in humid sites and from 0.03 ± 0.06 Mg C ha
-1

 yr
-1

 to 0.003 ± 0.004   ha
-1

 yr
-1 

in dry 

sites (Figure 3c).  The seasonality of NPPFruit was surprisingly small at all sites. 

 

3.2.3. Above-ground coarse woody net primary productivity 

The mean annual value of above-ground coarse wood net primary productivity (NPPACW) is 2.08 ± 

0.04 Mg C ha
-1

 yr
-1

 (n = 8) for humid sites, and 2.40 ± 0.09 Mg C ha
-1

 yr
-1

 (n = 4) for dry sites. 

The seasonal trend of NPPACW is remarkably consistent between both precipitation regimes, with 

greater seasonal amplitude in dry sites. At all sites, wood production gradually increases from its 

lowest value in the dry season (June - August), to its highest value in the humid season (December 

- January). This gradual decline takes place over a period of 5 months. Then, NPPACW begins to 

decline before the end of the humid season (March), reaching values close to its lowest value as 

early as April. Values range from 0.23 ± 0.03 Mg C ha
-1

 yr
-1

 to 0.12 ± 0.04 Mg C ha
-1

 yr
-1 

(n = 8) 

in humid sites and from 0.38 ± 0.10 Mg C ha
-1

 yr
-1

 to 0.09 ± 0.03 Mg C ha
-1

 yr
-1 

(n = 4) in dry sites 

(Figure 2a).   
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3.2.4. Fine root net primary productivity 

Mean annual values of fine root net primary productivity (NPPFine roots) differ significantly between 

humid and dry sites (p-value < 0.0005). The mean annual value for NPPFine roots is 3.81 ± 0.08 Mg 

C ha
-1

 yr
-1

 (n = 8) for humid sites, and 2.24 ± 0.04 Mg C ha
-1

 yr
-1

 (n = 4) for dry sites. 

NPPFine rootss seasonality is remarkably low at all sites. We recorded a non-significant increase in 

root production at the start of the wet season in humid (p-value = 0.35), and dry sites (p-value = 

0.15)  (Figure 2, sup. mat. Figure S2).   

3.3 Seasonal trends in NPP allocation 

We explore the seasonal carbon allocation trends of each forest using ternary diagrams (Figures 4 

and 5). A ternary diagram graphically depicts the ratios of the three variables as positions in 

an equilateral triangle. In figure 5, each of the three apexes of the triangle represent an NPP 

component, and each side represents a percent abundance scale. Each point plotted in the triangle 

represents the variance of monthly carbon allocation to NPPACW, NPPCanopy, and NPPFine roots, as a 

percentage. It shows two distinct seasonal NPP allocation patterns. Dry sites (KEN-02, KEN-01, 

TAN-05, and TAN-06) have low variance in NPPRoot allocation, and high variance in NPPACW and 

NPPCanopy allocation. This may suggest a constant allocation to fine roots, while there is a 

allocation trade-off between wood production and canopy production. Humid sites (CAX-03, 

CAX-06, CAX-08, TAM-05, and TAM-06) show little variance in allocation to NPPACW, but high 

variance in allocation between NPPFine roots and NPPCanopy (sup. mat. Figure S4).  

The data used in Figure 5 are presented in the supplementary material as ternary diagrams of mean 

monthly NPP allocation for each plot (sup. mat. Figure S5). We interpret seasonal movements 

along an axis as an indication of a trade-off between two components. In the dry sites, we observe 

constant allocation to roots (e.g. ca. 30% allocation to NPPFine roots throughout the year in KEN-01 

https://en.wikipedia.org/wiki/Equilateral
https://en.wikipedia.org/wiki/Triangle
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and KEN-02), and a seasonal trade-off between NPPACW and NPPCanopy. We find higher allocation 

to NPPACW during the wet season and higher allocation to NPPCanopy during the dry season. In the 

humid sites, we observe constant allocation to NPPACW and a seasonal trade-off between NPPFine 

roots and NPPCanopy. We find higher allocation to NPPFine roots during the wet season and higher 

allocation to NPPCanopy during the dry season (sup. mat. Figure S5).  

 

4. Discussion 

4.1 Seasonal trends of net primary productivity 

4.1.1. Leaf productivity 

Discussions around the Amazon green up began with a series of optical remote sensing studies 

reporting a significant increase in greenness during the dry season [Huete et al., 2006; Myreni et 

al., 2007], which was interpreted as an increase in leaf production during the 2005 Amazonian 

drought [Saleska et al., 2007; Brando, 2010]. Ecologically, this apparent enhanced leaf production 

was associated increased solar radiation, suggesting that Amazonian forests are light-limited rather 

than moisture-limited. The paradigm of light-limited forests was challenged by Samanta et al. 

[2010, 2012] and Anderson et al. [2010], who found no consistent impact of the 2005 drought on 

canopy productivity. Morton et al. [2014] went further by arguing that the Amazon dry season 

green up is an artefact of seasonal changes in near-infrared reflectance, an artefact of variations in 

sun-sensor geometry. When correcting for this artefact, these authors suggested no change in 

canopy production over an annual cycle. Morton et al. [2014] support the initial ground-based 

interpretations that seasonal moisture availability governs the balance between photosynthesis and 

autotrophic respiration in Amazonian forests [Saleska et al., 2003, Nepstad et al., 2002, Phillips et 

al., 2009, Meir and Woodward, 2010].  Restrepo Coupe et al. [2013] and Guan et al. [2015] 
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suggest that Amazonian forests may be separated into radiation-controlled forests in wetter 

climates and precipitation-controlled forests in drier climates.   

The field-based data presented here confirms that Amazon forests maximise leaf production 

during the dry season. At the plot level, our results support earlier interpretations that light-

limited forests respond to an increase in daily insolation during the dry season [Borchert et al. 

2014] (Figure 1a). We found that humid and dry sites show a peak in NPPCanopy at the height of the 

dry season (August). One possible explanation is that these forests synchronise the timing of leaf 

production with the prospect of renewed water availability. Increased daily insolation may 

enhance radiation-limited photosynthesis as long as the system remains energy-limited rather than 

moisture-limited. This observation is consistent with Wu et al. [2015], who demonstrate that 

changes in leaf spectral characteristics with leaf age, with leaf flush occurring in the late dry 

season, drive the apparent green-up seasonal cycle in a site in Brazil. 

Correlational evidence suggests that physical drivers control seasonal allocation patterns, results 

that are potentially valuable for Earth System Models. Leaf phenology of an old growth forest in 

steady state is likely to yield optimal carbon gain at the canopy level, so that trees adjust leaf gains 

and losses in response to environmental factors to achieve maximum carbon assimilation 

[Caldararu et al., 2014].  However, leaf production phenology is not a simple function of 

proximate cues such as radiation or precipitation, and should not be considered merely at the 

ecosystem level: the evolutionary perspective should be explored. A tropical forest is a collection 

of diverse species, and each canopy tree community consists of multiple species that compete with 

each other and might employ contrasting leafing phenology. Some may employ strategies to avoid 

competition with neighbouring trees, or exhibit seasonal leaf phenotypes to take advantage of 

seasonal windows of opportunity such as the early dry season, when solar radiation is high but the 

soil is still moist. Also, minimal insect activity, low fungal pathogen pressure and maximum 
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irradiance often co-occur in the dry season [Lieberman, 1982; Aide, 1988; Givnish, 1999]; hence 

the possibility that dry season leaf flush is an evolutionary response to minimise herbivory 

pressure on budding leaves must be considered [Wright and Calderon, 1995]. Avoidance of 

nutrient leaching during leaf expansion, when the leaf cuticle is not fully developed, has also been 

proposed as an evolutionary explanation [Johnson et al. 2011]. Further more, each individual 

within a species shares genes with its conspecifics but there is variation; gene expression adds 

another layer of complexity.  

Reducing much of the complexity to light limitation vs. water limitation at the stand level is 

attractive. Nonetheless, we need to be aware that it may lead to incorrect models, and 

understanding intra- and interspecific competition and interactions between individuals would 

allow for a better understanding of community level leafing phenology.  

Finally, edaphic factors are likely to affect a forest’s seasonal trends: differences in precipitation 

regimes may depend on forest soils accumulating rainfall to generate enough subsurface water 

storage carried over for dry season plant water demand.  Differences in soil physical properties 

(mainly soil depth) explains why the two plots at our Kenia site (dry site) display differing forest 

types, whilst experiencing identical climatic conditions and being only 1 km apart Doughty et al., 

2015]. 

 

4.1.2. Above-ground woody growth  

An increase in NPPACW during the wet season, following a slow growth rate during the dry season 

is well established in the tropical ecological literature [Wagner et al., 2012; Rowland et al., 2013; 

Doughty et al., 2014a]. Whereas the production of new leaves, flower and fruit may not deplete 

non-structural carbohydrate pools [Wurth et al., 2005], wood production is likely to be carbon 
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limited [Wagner et al., 2013]. Non-structural carbohydrate dynamics are involved in part of the 

stem growth and coarse root patterns, although understanding how they are involved requires 

further investigation (they were not measured in the current study). Understanding how non-

structural carbohydrate dynamics are related to the seasonality of NPP components would further 

our understanding the response of tropical forests to seasonal changes in moisture availability 

[Doughty et al., 2014a, Doughty et al., 2014b]. Temporal buffering by non-structural carbohydrate 

reserves to enable a lag between photosynthetic seasonality and leaf, wood or root production may 

play an important role [Doughty et al., 2014]. NSC may also be a pool that constrains our 

allocation results, not just as a buffer which can be drawn on: the possibility of active allocation to 

the NSC pool which also varies seasonally should be considered [Hartmann et al., 2015]. 

 

4.1.3. Fine root productivity 

On an annual timescale, humid sites produce more fine roots than dry sites, corroborating previous 

findings by Metcalfe et al. [2009] and Girardin et al. [2013]. On a seasonal timescale, fine roots 

show evidence of a response to an increase in moisture availability in humid sites. At those sites, 

the surge in root production at the start of the wet season coincides with an increase in NPPACW. 

One possible interpretation is an increase in allocation to roots to maximise the uptake of nutrients 

during a period of above-ground coarse wood growth. 

We only report on fine root productivity for the top 0-30 cm depth. The present study investigates 

the seasonality of root growth and it is uncertain that total NPPFine roots (including roots at a greater 

depth) would be comparable to that of roots from the top 0-30 cm depth. Studies from Amazonian 

forests indicate that the top 30 cm of soil contains 69 to 73% of total fine roots [Jackson et al., 
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1998; Quesada et al., 2011]. However, the importance of root growth in deep rooting moisture-

limited forests requires further investigation [Nepstad et al., 1994; Metcalfe et al., 2009]. 

4.1.4. Fruit and flower production 

We found minimal differences in the reproductive seasonality of forests across precipitation 

gradients. Flowering times affect plant success via the reproductive process. The timing and 

longevity of flower production dictates pollination rates and the subsequent timing and success of 

seed development, dispersal and germination [Wright and Calderon, 1995]. Hence, understanding 

the trends in flowering times is essential to understanding how plants will respond to changes in 

seasonal weather trends. However, the roles of biotic (e.g. competition for resources, pollinators 

and dispersers) and abiotic (e.g. weather) interactions in determining flowering phenology remain 

unclear.  

The synchronised flowering observed at all our sites, including the wettest site with no distinct dry 

season, concurs with the phenological information gathered from Amazonia and Central America 

over the past decade [Wright and van Shaik, 1994; Wright and Calderon, 1995; Brochert, 2000; 

Rivera, 2002]. Our results support the hypothesis of increases in daily insolation as a cue for 

synchronised flowering [Calle et al., 2009, 2010; Brochert et al., 2005]. However, solar irradiance 

is unlikely to be a driver of NPPFlower, rather a cue for an event governed by phylogeny [Wright 

and Calderon, 1995]. An intrinsic biological clock developed as an evolutionary response to biotic 

interactions may ultimately govern reproductive phenology. Humid sites experience a 

synchronised peak flowering episode in November. Dry sites experience a longer peak flowering 

season (September to November). An investigation of the seasonality of plant-herbivory and -

pollination interactions in humid and dry sites may explain these trends.  Many pollinators prefer 

dry conditions [Frankie, 1975], hence the dry season peak in flowering might be a response to an 

increase in pollinator activity, which in turn may be in synchrony with solar radiation and reduced 
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rainfall. The carbon allocated to flowering and fruiting is so small (< 10% of NPP) that seasonal 

changes in NPP are unlikely to be a driver of reproductive phenology. 

 

We observe staggered fruitfall for both forest types, varying by species. Staggered phenologies are 

interpreted as an evolutionary response to reduce interspecific competition for pollinators and 

dispersers [Foster et al., 1982; Poulin, 1999]. Staggered phenologies may also be interpreted as a 

strategy to optimise the success of seed germination. An increase in fruit fall at the beginning of 

the dry season allows drought tolerant plants to germinate in high solar irradiance. An increase in 

fruit fall at the end of the dry season allows moisture demanding plants to germinate in wetter 

conditions [Chave et al., 2010].  

As flowers and fruit have a short canopy lifetime, we assume that flower and fruit litterfall are a 

metric of their productivity rate, with a lag time of 1-3 mo for the fruiting. Hence, the values 

presented here are reported as NPPFruit and NPPFlower [Girardin et al., 2014], with the important 

caveats that (1) frugivory may lead to a substantial underestimate of total fruit production and (2) 

fruit litterfall has a highly variable species-specific lag time of up to several months. Our data 

confirm that fruit litterfall has a highly variable lag time of up to several months, as reported by 

Mendoza et al. [2014]. However, why would plants spend big differences in time building fruits 

post pollination? Why don’t we record evidence of staggered flowering to avoid competition for 

pollinators? The flowering and fruiting phenology of tropical forests remains a ripe area for 

future research.  
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4.2 Seasonal trends in NPP allocation 

We identify two possible seasonal carbon allocation patterns (i) drier plots show evidence of 

constant allocation to roots and a seasonal trade-off between canopy and woody production; and 

(ii) humid plots show evidence of constant allocation to wood and a seasonal trade-off between 

roots and canopy production. None of our sites exhibited constant allocation to the canopy with a 

trade-off between roots and wood (Figure 5, Sup mat. Figure S5). 

As our plots in this analysis are clustered into four sites, it is possible that spatial autocorrelation 

effects have an influence through edaphic factors or species composition effects, so caution is 

warranted before broadly assigning specific allocation strategies to specific precipitation regimes. 

Nonetheless, our observations are consistent with an interpretation that trees in water-limited sites 

increase water acquisition through fine roots, resulting in constant plot-level allocation to fine 

roots throughout the annual cycle. In contrast, trees in light-limited (humid) sites experience 

increased competition for light capture, resulting in constant plot level NPP allocation to woody 

growth. The vertical stratification in light resources in closed canopy forests may result in 

individual trees allocating NPP to stem growth over building new leaves to maximise light capture 

by the leaves it does have [Wolf et al., 2011]. In both cases, inter-individual competition may be 

an important driver of NPP allocation, as predicted by game theory optimisation models. These 

models predict an increase in allocation towards the limiting resource beyond the collective 

optimum to deprive competitors of the limiting resource, resulting in non-optimal stand 

productivity [Franklin et al., 2012]. Our results support this theory, as maintaining a high 

allocation to roots in systems where precipitation is a limiting factor and a high allocation to wood 

in irradiance limited systems may indicate competition for soil moisture and light, respectively. 
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All climate models predict a significant increase in temperatures and most predict an increase in 

seasonality [Zelazowski et al., 2010]. This will have immediate effects on water and light 

provision [Urrutia and Vuille, 2009; Buytaert et al., 2011; Solomon et al., 2009; Arias et al., 

2011]. Hence, understanding the process of resource allocation in humid and seasonally dry 

forests is an important step to improve our predictive understanding of the carbon cycle in a 

rapidly changing climate. Existing models are especially weak on their use of allocation 

coefficients, often applying coefficients to all broadleaf tropical evergreen forests. However, our 

results demonstrate important variations in allocation coefficients between seasons and between 

wet and dry sites. The information collected by the GEM protocol may be used in models to 

explore direct responses to light and moisture availability on an interannual scale: Does allocation 

strategy change in dry years or is it a fixed property of the trees in a forest stand? Does a decline in 

tree growth during drought reflect reduced productivity or merely a  shift in allocation strategy? 

Do moisture availability thresholds control these trends (i.e. how much dryer would a dry site have 

to get before these patterns change)? Are wet or dry sites more sensitive to changes in 

precipitation? The insights provided in our study are important in addressing questions on forest 

response to drought, and how that response may vary across the Amazon basin. 

 

5. Conclusions 

The ground-based data described in the present study indicates that the Amazon forests we studied 

maximise leaf production during the dry season. This implies that an increase in solar irradiance 

during the dry season leads to an increase in photosynthesis in forests where radiation and fresh 

leaf area are limiting factors. As for reproductive trends, NPPFlower seasonality appears to be 

synchronised with the seasonality of solar irradiance. However, solar irradiance may not be a 

driver of NPPFlower, rather a cue for an event governed by phylogeny.  
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We identify two main seasonal allocation strategies: trade-offs between allocation to wood and 

canopy (dry sites), and trade-offs between allocation to roots and canopy (humid sites). 

Understanding the processes that govern seasonal carbon allocation strategies of humid and dry 

forests will help us understand their phenological responses to a transition from radiation-limited 

to moisture-limited forests.  The correlational evidence for present day forests suggests dominant 

roles for precipitation and radiation controls over seasonal allocation patterns. However, it is still 

possible that those allocation patterns emerged from the data for other reasons (e.g. herbivore 

pressure, pollinator incidence) and further research is needed to understand the ecological and 

evolutionary mechanisms that control seasonal allocation patterns.  

Phenological models for tropical forest ecosystems remain poorly developed [Morin and Chuine, 

2005; Sakai, 2001]. To understand the seasonal trends of tropical forest productivity, we must 

begin by explaining the complex interactions between plant physiology, abiotic and biotic factors, 

and evolutionary biology. One of the main limitations of representing tropical forests in Earth 

System Models is our incomplete understanding of the allocation strategies of different forests 

(REF needed). Systematic collection of the same metrics of NPP across multiple sites allows for 

new insights on seasonal, annual and inter-annual allocation strategies of tropical forests. We hope 

that our present attempt to decipher the seasonal trends of NPP allocation in lowland Amazonia 

will help the research community towards improvements in the predictive power of these models.  
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Table 1  

  

 

 

RAINFOR site code ALP-11 ALP-30 TAM-05 TAM-06 KEN-01 KEN-02 CAX-04 CAX-06 CAX-08 TAN-06 TAN-05

Latitude -3.95 -3.9543 -12.8309 -12.8385 -16.0158 -16.0158 -1.7160 -1.7369 -1.7160 -13.0765 -13.0765

Longitude -73.4333 -73.4267 -69.2705 -69.296 -62.7301 -62.7301 -51.4570 -51.46194 -51.4570 52.3858 52.3858

Elevation (m asl) 120 150 223 215 384 384 47 47 47 385 385

Solar radiation (GJ m -2 yr -1)

Mean annual air temperature (°C)

Precipitation (mm yr-1)

Mean MCWD (mm)

Soil moisture (%) 26.8 ± 0.3 10.8 ± 0.2 21.8 ± 0.2 35.5 ± 0.4 19.7 ± 0.4 16.0 ± 0.3 22.4 ± 0.1 27.1 ± 0.3 22.4 ± 0.1 10.7 ± 0.2 10.8 ± 0.2

Soil type Alisol/Gleysol Arenosol Cambisol Alisol Cambisol Cambisol Vetic Acrisol Ferralsol Terra Preta Ferralsol Ferralsol 

Ptotal (mg kg-1) 125.6 37.6 256.3 528.8 447.1 244.7 37.4 178.5 37.4 147 147

Total N (%) 0.1 0.08 0.16 0.17 0.22 0.17 0.06 0.13 0.06 0.16 0.16

Total C (%) 1.19 1.13 1.51 1.2 2.4 2 0.83 1.68 0.83 2.55 2.55

Soil C stock (Mg C ha-1 from 0-30 cm) 92.95 16.4 43.7 37.4 74.8 67.1 35 51.9 35 67.1 67.1

Soil organic layer depth (cm) 12 10 13 37 32 54 30 35 30 28 28

Cation exchange capacity (mmolc  kg−1) 30.4 4.9 44.8 56.8 75.58 60.74 1.34 22.82 1.34 19.47 19.47

Sand (%) 65 82 40 2 58.05 55.48 83.69 32.54 83.69 45.73 45.73

Clay (%) 15 2 44 46 19.13 18.25 10.68 53.76 10.68 48.9 48.9

Silt (%) 20 16 17 52 22.82 26.27 5.64 13.7 5.64 5.37 5.37
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Figure 1. Seasonality of weather variables in three lowland Amazonian forests sites in Peru, 

Bolivia and Brazil. Weather stations were located at Tambopata (TAM-05), Kenya (KEN-01), 

Caxiuanã (CAX-06), Allpahuayo (ALP-01) and Tanguro (TAN-05), and Solar irradiance (W m
-2

), 

precipitation (mm mo
-1

), air temperature (ºC) and relative humidity (%) are presented on a 

monthly timescale, as a mean over three years (2009-2011). Solid lines represent the average of 

humid sites (Caxiuanã, Tambopata, Allpahuayo) and dotted lines represents the dry sites (Kenya, 

Tanguro). The KEN-01 weather station is used in both dry and humid site analysis, as it is the 

local weather station for KEN-01 and KEN-02. Interannual variability are provided as grey ribbon 

(± SD), intersite variability are presented as error bars centred on the mean, (± SD).  
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Figure 2. Seasonality of net primary productivity components in ten lowland Amazonian forest 

plots in Peru, Bolivia and Brazil. Data were averaged over humid sites (solid line, ALP-01, ALP-

30, CAX-03, CAX-06, CAX-08, TAM-05, and TAM-06), and dry sites (dotted line, KEN-02, 

KEN-01, TAN-05, and TAN-06). Net primary productivity of leaf (NPPLeaf), above-ground coarse 

wood (NPPACW) and fine roots (NPPFine roots) are presented on a monthly timescale, as a mean over 

three (2009-2011) or four (2009-2012, Tambopata) years. The start and end of the dry season is 

represented by vertical grey lines. Interannual variability are provided as grey ribbon (± SD), 

intersite variability are presented as error bars centred on the mean, (± SD). Data for each plot are 

provided in Supplementary Material. 
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Figure 3. Seasonality of net primary productivity of reproductive organs in nine lowland 

Amazonian forest plots, Peru, Bolivia and Brazil. Data were averaged over humid sites (solid line, 

ALP-01, ALP-30, CAX-03, CAX-06, CAX-08, TAM-05, and TAM-06), and dry sites (dotted line, 

KEN-02, KEN-01, TAN-05, and TAN-06). Net primary productivity of flower (NPPFlower), and 

fruit (NPPFruit) are presented on a monthly timescale, as a mean over three (2009-2011) or four 

(2009-2012, Tambopata) years. The start and end of the dry season is represented by vertical grey 

lines. Interannual variability are provided as grey ribbon (± SD), intersite variability are presented 

as error bars centred on the mean, (± SD).  Data for each plot are provided in Supplementary 

Material. 

  



 

 
© 2016 American Geophysical Union. All rights reserved. 

 

Figure 4. Seasonality of net primary productivity allocation to canopy (NPPCanopy), above-ground 

coarse wood (NPPACW) and fine roots (NPPFine roots) in nine lowland Amazonian forest plots, Peru, 

Bolivia and Brazil. Data were averaged over humid sites (solid line, ALP-01, ALP-30, CAX-03, 

CAX-06, CAX-08, TAM-05, and TAM-06), and dry sites (dotted line, KEN-02, KEN-01, TAN-

05, and TAN-06). Allocation data are presented as percentage of total NPP allocated to each 

component each month, as a mean over three (2009-2011) or four (2009-2012, Tambopata) years. 

Interannual variability are provided as grey ribbon (± SD), intersite variability are presented as 

error bars centred on the mean, (± SD). Data for each plot are provided in Supplementary 

Material. 
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Figure 5. Ternary diagram of the normalised variance of seasonal allocation of net primary 

productivity in eight lowland Amazonian forest plots, Peru, Bolivia and Brazil. Normalised 

variance was calculated as the variance of each component divided by the sum of the variances 

(NPPLeaf, NPPACW, and NPPFine roots). Each point represents the annual variance of NPP allocated 

to components, as a mean over three (2009-2011) or four (2009-2012, Tambopata) years. Data 

were averaged over humid sites (solid line, CAX-03, CAX-06, CAX-08, TAM-05, and TAM-06), 

and dry sites (dotted line, KEN-01, KEN-02, TAN-05, and TAN-06). We did not have sufficient 

data from Allpahuayo to carry out this analysis. Circles represent dry sites, triangles represent 

humid sites.  

 

 


