14 research outputs found

    Obstetric near-miss and maternal mortality in maternity university hospital, Damascus, Syria: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigating severe maternal morbidity (near-miss) is a newly recognised tool that identifies women at highest risk of maternal death and helps allocate resources especially in low income countries. This study aims to i. document the frequency and nature of maternal near-miss at hospital level in Damascus, Capital of Syria, ii. evaluate the level of care at maternal life-saving emergency services by comparatively analysing near-misses and maternal mortalities.</p> <p>Methods</p> <p>Retrospective facility-based review of cases of near-miss and maternal mortality that took place in the years 2006-2007 at Damascus Maternity University Hospital, Syria. Near-miss cases were defined based on disease-specific criteria (Filippi 2005) including: haemorrhage, hypertensive disorders in pregnancy, dystocia, infection and anaemia. Main outcomes included maternal mortality ratio (MMR), maternal near miss ratio (MNMR), mortality indices and proportion of near-miss cases and mortality cases to hospital admissions.</p> <p>Results</p> <p>There were 28 025 deliveries, 15 maternal deaths and 901 near-miss cases. The study showed a MNMR of 32.9/1000 live births, a MMR of 54.8/100 000 live births and a relatively low mortality index of 1.7%. Hypertensive disorders (52%) and haemorrhage (34%) were the top causes of near-misses. Late pregnancy haemorrhage was the leading cause of maternal mortality (60%) while sepsis had the highest mortality index (7.4%). Most cases (93%) were referred in critical conditions from other facilities; namely traditional birth attendants homes (67%), primary (5%) and secondary (10%) healthcare unites and private practices (11%). 26% of near-miss cases were admitted to Intensive Care Unit (ICU).</p> <p>Conclusion</p> <p>Near-miss analyses provide valuable information on obstetric care. The study highlights the need to improve antenatal care which would help early identification of high risk pregnancies. It also emphasises the importance of both: developing protocols to prevent/manage post-partum haemorrhage and training health care professionals to manage infrequent but fatal conditions like sepsis. An urgent review of the referral system and the emergency obstetric care in Syria is highly recommended.</p

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    Pan-cancer analysis of whole genomes

    No full text

    Author Correction: The landscape of viral associations in human cancers

    No full text
    author correctio
    corecore