348 research outputs found

    Effects of Kefir Powder Fortification on Yogurt Qual

    Get PDF
    The aim of this research was to improve functional properties and sensory of plain set type yogurt since yogurt bacteria have low probiotic properties. Total solid standardization (to 15% w v-1) of milks was made with either using natural kefir powder as a treatment group (KTYO) or milk powder as a control group (YKON). Kefir powder was produced with freeze-dried kefir made from kefir grains. Microbial, chemical, sensory and physical properties of yogurts were determined during cold storage. The attributes determined on the yogurts were pH, total solids, titratable acidity, whey separation, sensory properties, color parameters and flavor. Numbers of Lactobacillus spp. in yogurt samples contained either kefir powder or milk powder were similar and did not change significantly during cold storage. L. acidophilus and Bifidobacterium spp. contents of KTYO ranged between 5.79-6.93 log cfu g-1 and 4.05-4.83 log cfu g-1 during the cold storage, respectively. There was no significant reduction in the number of L. acidophilus and Bifidobacterium spp. during the storage (P>0.05). In general, sensory properties of the YKON and KTYO were similar (P>0.05). &nbsp

    Chemical composition and sensory analysis of cheese whey-based beverages using kefir grains as starter culture

    Get PDF
    The aim of the present work was to evaluate the use of the kefir grains as a starter culture for tradicional milk kefir beverage and for cheese whey-based beverages production. Fermentation was performed by inoculating kefir grains in milk (ML), cheese whey (CW) and deproteinised cheese whey (DCW). Erlenmeyers containing kefir grains and different substrates were statically incubated for 72 h at 25 °C. Lactose, ethanol, lactic acid, acetic acid, acetaldehyde, ethyl acetate, isoamyl alcohol, isobutanol, 1-propanol, isopentyl alcohol and 1-hexanol were identified and quantified by high-performance liquid chromatography and GC-FID. The results showed that kefir grains were able to utilise lactose in 60 h from ML and 72 h from CW and DCW and produce similar amounts of ethanol (∼12 g L−1), lactic acid (∼6 g L−1) and acetic acid (∼1.5 g L−1) to those obtained during milk fermentation. Based on the chemical characteristics and acceptance in the sensory analysis, the kefir grains showed potential to be used for developing cheese whey-based beverages.The authors acknowledge the financial support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), CAPES-GRICES and Lactogal for supplying CW powder

    Influence of continuous exposure to gaseous ozone on the quality of red bell peppers, cucumbers and zucchini

    Get PDF
    The effect of continuous exposure to ozone on quality changes during the storage of red bell peppers, cucumbers and zucchini was investigated. Peppers were stored at 14 °C and were exposed to ozone at 0.1 and 0.3 μmol mol−1, while cucumbers and zucchini were stored at 12 and 8 °C, respectively, and exposed to ozone at 0.1 μmol mol−1. The content of fructose (2.75 g/100 g FW) and glucose (2.00 g/100 g FW) in red bell peppers exposed to ozone at 0.1 μmol mol−1 was increased by 8 and 7%, respectively, when compared to controls. Continuous exposure to ozone at 0.3 μmol mol−1, on the other hand, had no effect on fructose (2.52 g/100 g FW) and glucose (1.88 g/100 g FW) content. The content of vitamin C was significantly enhanced in red bell peppers exposed to ozone at 0.1 and 0.3 μmol mol−1 after 7 d of storage, however, this effect was not maintained. After 14 d, vitamin C content in peppers exposed to ozone at 0.1 μmol mol−1 was not significantly different from the control, whereas it was reduced at 0.3 μmol mol−1. Total phenolics content was increased in peppers exposed to ozone at 0.1 μmol mol−1, but was unaffected at 0.3 μmol mol−1. Continuous exposure of red bell peppers to ozone at 0.1 and 0.3 μmol mol−1 had no significant effect on weight loss, texture and colour. In cucumbers and zucchini, continuous exposure to ozone at 0.1 μmol mol−1 reduced weight loss by more than 40% and improved texture maintenance, while having no significant effect on their biochemistry. The findings from this study suggest that continuous exposure to ozone at 0.1 μmol mol−1 is a promising method for shelf-life extension of cucumbers and zucchini. Even though in red bell peppers continuously exposed to ozone at 0.1 μmol mol−1 sugars and phenolics content was increased, further work is still needed to better understand the exact mechanism of ozone action and its potential for the industrial use

    Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir

    Get PDF
    Cheese whey (CW) and deproteinised cheese whey (DCW) were investigated for their suitability as novel substrates for the production of kefir-like beverages. Lactose consumption, ethanol production, as well as organic acids and volatile compounds formation, were determined during CW and DCW fermentation by kefir grains and compared with values obtained during the production of traditional milk kefir. The results showed that kefir grains were able to utilise lactose from CW and DCW and produce similar amounts of ethanol (7.8–8.3 g/l), lactic acid (5.0 g/l) and acetic acid (0.7 g/l) to those obtained during milk fermentation. In addition, the concentration of higher alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-propanol, and 1-propanol), ester (ethyl acetate) and aldehyde (acetaldehyde) in cheese whey-based kefir and milk kefir beverages were also produced in similar amounts. Cheese whey and deproteinised cheese whey may therefore serve as substrates for the production of kefir-like beverages similar to milk kefir.The authors acknowledge the financial support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), CAPES-GRICES and Lactogal for supplying cheese whey powder

    Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol

    Get PDF
    Active edible films were prepared by adding carvacrol into sodium caseinate (SC) and calcium caseinate (CC) matrices plasticized with two different glycerol concentrations (25 and 35 wt%) prepared by solvent casting. Functional characterisation of these bio-films was carried out by determination of some of their physico-chemical properties, such as colour, transparency, oxygen barrier, wettability, dye permeation properties and antibacterial effectiveness against Gram negative and Gram positive bacteria. All films exhibited good performance in terms of optical properties in the CIELab space showing high transparency. Carvacrol was able to reduce CC oxygen permeability and slightly increased the surface hydrophobicity. Dye diffusion experiments were performed to evaluate permeation properties. The diffusion of dye through films revealed that SC was more permeable than CC. The agar diffusion method was used for the evaluation of the films antimicrobial effectiveness against Escherichia cell and Staphylococcus aureus. Both SC and CC edible films with carvacrol showed inhibitory effects on both bacteria. (C) 2013 Elsevier Ltd. All rights reserved.This research was supported by the Ministry of Science and Innovation of Spain through the projects MAT2011-28468-C02-01, MAT2011-28468-C02-02 and HP2008-0080. M.P. Arrieta thanks Fundacion MAPFRE for "Ignacio Hernando de Larramendi 2009-Medio Ambiente" fellowship (MAPFRE-IHL-01). Authors thank Ferrer Alimentacion S.A., for providing the caseinates powders.Arrieta, MP.; Peltzer, MA.; López Martínez, J.; Garrigós Selva, MDC.; Valente, AJM.; Jimenez Migallon, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering. 121:94-101. https://doi.org/10.1016/j.jfoodeng.2013.08.015S9410112

    Characterization of kefir-like beverages produced from vegetable juices

    Get PDF
    The aim of this work was to develop new non-dairy fermented beverages using vegetable juices as fermentable substrates. Carrot, fennel, melon, onion, tomato and strawberry juices underwent backslopping fermentations, carried out by water kefir microorganisms. Results indicated that lactic acid bacteria and yeasts were capable of growing in the juices tested. Melon juice registered the highest numbers of microorganisms. Almost all juices underwent a lactic fermentation. After fermentation, there was observance of a decrease of the soluble solid content and an increase of the number of volatile organic compounds. In particular, esters were present in high amounts after the fermentation, especially in strawberry, onion and melon, whereas carrot and fennel registered a significant increase of terpenes. The concentration of alcohols increased, while that of aldehydes decreased. Changes in colour attributes were registered. Strawberry, onion and tomato juices retained a high antioxidant activity after fermentation. The overall quality assessment indicated that carrot kefir-like beverage (KLB) was the product mostly appreciated by the judges. These findings support the further development of vegetable KLBs with additional benefits and functional properties

    Effect of chitosan essential oil films on the storage-keeping quality of pork meat products

    Full text link
    Edible films based on chitosan were prepared, with and without basil or thyme essential oils, with the aim of assessing their protective ability against lipid oxidation and their antimicrobial activity. Chitosan films had good oxygenbarrier properties, which were worsened by essential oil addition, especially when the film equilibrium moisture content increased. Due to the oxygen-barrier effect, all the films effectively protected pork fat from oxidation, in comparison to unprotected samples. In spite of the worsening of the oxygen-barrier properties, the films with essential oils were more effective than those of pure chitosan, which points to the chemical action of specific antioxidant compounds of the oils. Films were effective to control microbial growth in minced pork meat, although the incorporation of essential oils did not improve their antimicrobial activity. Throughout the storage, the films led to colour changes in minced pork meat associated with the conversion of myoglobin into metmyoglobin due to the reduction of the oxygen availability.The authors acknowledge the financial support provided by the Universitat Politecnica de Valencia (PAID-06-09-2834), Generalitat Valenciana (GV/2010/082) and Ministerio de Educacion y Ciencia (AGL2010-20694). Author J. Bonilla is deeply grateful to Generalitat Valenciana for a Santiago Grisolia Grant.Bonilla Lagos, MJ.; Vargas, M.; Atarés Huerta, LM.; Chiralt Boix, MA. (2014). Effect of chitosan essential oil films on the storage-keeping quality of pork meat products. Food and Bioprocess Technology. 7(8):2443-2450. https://doi.org/10.1007/s11947-014-1329-3S2443245078ASTM D3985. (1995). Standard test method for oxygen gas transmission rate through plastic films and sheeting using a coulometric sensor. West Conshohocken: American Society for Testing and Materials.Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104, 649–656.Aureli, P., Costantini, A., & Zolea, S. (1992). Antimicrobial activity of some plant essential oils against Listeria monocytogenes. Journal of Food Protection, 55, 344–348.Baranauskiene, R., Venskutoni, S. P. R., Viskelis, P., & Dambrauskiene, E. (2003). Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry, 51, 7751–7758.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012a). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: possibilities and limitations. Journal of Food Engineering, 110, 208–213.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012b). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26, 9–16.Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36, 162–167.Caner, C., Vergano, P. J., & Wiles, J. L. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer and storage. Journal of Food Science, 63, 1049–1053.Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., et al. (2009). Chitosan/clay ‘films properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23, 1895–1902.Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: possibilities and limitations. International Dairy Journal, 14, 273–285.Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde and eugenol in the growing media. Journal of Agricultural and Food Chemistry, 54, 2745–2749.Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C. V. L., & Porta, R. (2011). Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT--Food Science and Technology, 44, 2324–2327.Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372–379.Gaysinsky, S., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Growth inhibition of E. Coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. Journal of Food Protection, 68, 2559–2566.Govaris, A., Botsoglou, E., Sergelidis, D., & Chatzopoulou, P. D. (2011). Antibacterial activity of oregano and thyme essential oils against Listeria monocytogenes and Escherichia coli O157:H7 in feta cheese packaged under modified atmosphere. LWT - Food Science and Technology, 44, 1240–1244.Han, J. H., & Gennadios, A. (2005). Edible films and coatings: a review. In J. H. Han (Ed.), Innovations in Food Packaging (pp. 39–262). Oxford: Elsevier Academic.Kim, J., Marshall, M. R., & Wei, C. I. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43, 2839–2845.Labuza, T. P. (1980). The effect of water activity on reaction kinetics of food deterioration. Food Technology, 34, 36–41.Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71, 100–121.Moure, A., Cruz, J. M., Franco, D., Dominguez, J. M., Sineiro, J., Dominguez, H., et al. (2001). Natural antioxidants from residual sources. Food Chemistry, 72, 145–171.Rao, M. S., Chander, R., & Sharma, A. (2005). Development of shelf-stable intermediate moisture meat products using active edible chitosan coating and irradiation. Journal of Food Science, 70, 325–331.Salame, M. (1986). Barrier polymers. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 48–54). New York: Wiley.Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98, 443–452.Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011a). Use of essential oils in bioactive edible coatings. Food Engineering Reviews, 3, 1–16.Sánchez-González, L., Cháfer, M., Hernández, M., Chiralt, A., & González-Martínez, C. (2011b). Antimicrobial activity of polysaccharide films containing essential oils. Food Control, 22, 1302–1310.Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53, 7749–7759.Singh, B., Falahee, M. B., & Adams, M. R. (2001). Synergistic inhibition of Listeria monocytogenes by nisin and garlic extract. Food Microbioliology, 18, 133–139.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41, 164–171.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.Vargas, M., Albors, A., & Chiralt, A. (2011). Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Science, 1, 39–43.Wan, J., Wilcock, A., & Coventry, M. J. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84, 152–158.Zivanovic, S., Chi, S., & Draughon, F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70, 45–51

    Bacterial Stressors in Minimally Processed Food

    Get PDF
    Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes
    corecore