105 research outputs found

    Literacy som aspekt ved norske elevers demokratikunnskap

    Get PDF
    Norske elever som skĂ„rer hĂžyt i kunnskapstesten om demokrati i International Civic and Citizenship Education Study (ICCS) i 2016, har ogsĂ„ hĂžye karakterer i samfunnsfag, norsk, matematikk og engelsk. Et sentralt spĂžrsmĂ„l i demokratiforskningen er om slik kunnskap skyldes trekk ved undervisningen eller ved elevenes bakgrunn. Vi undersĂžker hvordan lĂŠreplanenes innhold kan sannsynliggjĂžre elevenes resultat i ICCS’ kunnskapstest gjennom Ă„ Ăžve elevene i skriftkyndighet (literacy). Betydningen av literacy er tidligere kjent fra forskning om demokratikunnskap, men ICCS-studien mĂ„ler ikke literacy pĂ„ individnivĂ„. VĂ„r karakteranalyse drĂžftet i lys av literacy-begrepet bidrar til Ă„ styrke en konklusjon om at skolens undervisning bidrar til elevers demokratikunnskap

    Analysis and quantification of the diversities of aerosol life cycles within AeroCom

    Get PDF
    Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO_4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO_4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO_4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO_4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by S_O4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO_4 and SS. It is the dominant sink for SO_4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and turbulent dry Deposition. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain. Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for a given species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO_4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times

    The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Get PDF
    The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions. The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences. These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies

    The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate

    Get PDF
    The core version of the Norwegian Climate Center's Earth System Model, named NorESM1-M, is presented. The NorESM family of models are based on the Community Climate System Model version 4 (CCSM4) of the University Corporation for Atmospheric Research, but differs from the latter by, in particular, an isopycnic coordinate ocean model and advanced chemistry–aerosol–cloud–radiation interaction schemes. NorESM1-M has a horizontal resolution of approximately 2° for the atmosphere and land components and 1° for the ocean and ice components. NorESM is also available in a lower resolution version (NorESM1-L) and a version that includes prognostic biogeochemical cycling (NorESM1-ME). The latter two model configurations are not part of this paper. Here, a first-order assessment of the model stability, the mean model state and the internal variability based on the model experiments made available to CMIP5 are presented. Further analysis of the model performance is provided in an accompanying paper (Iversen et al., 2013), presenting the corresponding climate response and scenario projections made with NorESM1-M

    An AeroCom initial assessment – optical properties in aerosol component modules of global models

    Get PDF
    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds)

    Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models

    Get PDF
    Terrestrial isoprene, a biogenic volatile organic compound emitted by many plants, influences atmospheric chemistry and the Earth’s radiative balance. Elucidating its historical changes is therefore important for predicting climate change and air quality. Isoprene emissions can respond to climate (e.g., temperature, shortwave radiation, precipitation), land use and land cover change (LULCC), and atmospheric CO2 concentrations. However, historical trends of isoprene emissions and the relative influences of the respective drivers of those trends remain highly uncertain. This study addresses uncertainty in historical isoprene emission trends and their influential factors, particularly the roles of climate, LULCC, and atmospheric CO2 (via fertilization and inhibition effects). The findings are expected to reconcile discrepancies among different modelling approaches and to improve predictions of isoprene emissions and their climate change effects. To investigate isoprene emission trends, controlling factors, and discrepancies among models, we analyzed long-term (1850–2014) global isoprene emissions from online simulations of CMIP6 Earth System Models and offline simulations using the VISIT dynamic vegetation model driven by climate reanalysis data. Mean annual global present-day isoprene emissions agree well among models (434–510 TgC yr⁻Âč) with a 5 % inter-model spread (24 TgC yr⁻Âč), but regional emissions differ greatly (9–212 % spread). All models show an increasing trend in global isoprene emissions in recent decades (1980–2014), but their magnitudes vary (+1.27 ± 0.49 TgC yr⁻ÂČ, 0.28 ± 0.11 % yr⁻Âč). Long-term trends of 1850–2014 show high uncertainty among models (–0.92 to +0.31 TgC yr⁻ÂČ). Results of emulated sensitivity experiments indicate meteorological variations as the main factor of year-to-year fluctuations, but the main drivers of long-term isoprene emission trends differ among models. Models without CO2 effects implicate climate change as the driver, but other models with CO2 effects (fertilization only/and inhibition) indicate CO2 and LULCC as the primary drivers. The discrepancies arise from how models account for CO2 and LULCC alongside climate effects on isoprene emissions. Aside from LULCC-induced reductions, differences in CO2 inhibition representation (strength and presence or absence of thresholds) were able to mitigate or reverse increasing trends because of rising temperatures or in combination with CO2 fertilization. Net CO2 effects on global isoprene emissions show the highest inter-model variation (σ = 0.43 TgC yr⁻ÂČ), followed by LULCC effects (σ = 0.17 TgC yr⁻ÂČ), with climate change effects exhibiting more or less variation (σ = 0.06 TgC yr⁻ÂČ). The critical drivers of isoprene emission trends depend on a model’s emission scheme complexity. This dependence emphasizes the need for models with accurate representation of CO2 and LULCC effects alongside climate change influences for robust long-term predictions. Important uncertainties remain in understanding the interplay between CO2, LULCC, and climate effects on isoprene emissions, mainly for CO2. More long-term observations of isoprene emissions across various biomes are necessary, along with improved models with varied CO2 responses. Moreover, instead of reliance on the current models, additional emission schemes can better capture isoprene emissions complexities and their effects on climate

    The structure of mercantile communities in the Roman world : how open were Roman trade networks?

    Get PDF
    • 

    corecore