87 research outputs found

    The sleeping brain's connectivity and family environment: characterizing sleep EEG coherence in an infant cohort.

    Get PDF
    Brain connectivity closely reflects brain function and behavior. Sleep EEG coherence, a measure of brain's connectivity during sleep, undergoes pronounced changes across development under the influence of environmental factors. Yet, the determinants of the developing brain's sleep EEG coherence from the child's family environment remain unknown. After characterizing high-density sleep EEG coherence in 31 healthy 6-month-old infants by detecting strongly synchronized clusters through a data-driven approach, we examined the association of sleep EEG coherence from these clusters with factors from the infant's family environment. Clusters with greatest coherence were observed over the frontal lobe. Higher delta coherence over the left frontal cortex was found in infants sleeping in their parents' room, while infants sleeping in a room shared with their sibling(s) showed greater delta coherence over the central parts of the frontal cortex, suggesting a link between local brain connectivity and co-sleeping. Finally, lower occipital delta coherence was associated with maternal anxiety regarding their infant's sleep. These interesting links between sleep EEG coherence and family factors have the potential to serve in early health interventions as a new set of targets from the child's immediate environment

    Modulating influences of memory strength and sensitivity of the retrieval test on the detectability of the sleep consolidation effect

    Get PDF
    Emotionality can increase recall probability of memories as emotional information is highly relevant for future adaptive behavior. It has been proposed that memory processes acting during sleep selectively promote the consolidation of emotional memories, so that neutral memories no longer profit from sleep consolidation after learning. This appears as a selective effect of sleep for emotional memories. However, other factors contribute to the appearance of a consolidation benefit and influence this interpretation. Here we show that the strength of the memory trace before sleep and the sensitivity of the retrieval test after sleep are critical factors contributing to the detection of the benefit of sleep on memory for emotional and neutral stimuli. 228 subjects learned emotional and neutral pictures and completed a free recall after a 12-h retention interval of either sleep or wakefulness. We manipulated memory strength by including an immediate retrieval test before the retention interval in half of the participants. In addition, we varied the sensitivity of the retrieval test by including an interference learning task before retrieval testing in half of the participants. We show that a “selective” benefit of sleep for emotional memories only occurs in the condition with high memory strength. Furthermore, this “selective” benefit disappeared when we controlled for the memory strength before the retention interval and used a highly sensitive retrieval test. Our results indicate that although sleep benefits are more robust for emotional memories, neutral memories similarly profit from sleep after learning when more sensitive indicators are used. We conclude that whether sleep benefits on memory appear depends on several factors, including emotion, memory strength and sensitivity of the retrieval test

    An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy

    Full text link
    Infancy represents a critical period during which thalamocortical brain connections develop and mature. Deviations in the maturation of thalamocortical connectivity are linked to neurodevelopmental disorders. There is a lack of early biomarkers to detect and localize neuromaturational deviations, which can be overcome with mapping through high-density electroencephalography (hdEEG) assessed in sleep. Specifically, slow waves and spindles in non-rapid eye movement (NREM) sleep are generated by the thalamocortical system, and their characteristics, slow wave slope and spindle density, are closely related to neuroplasticity and learning. Spindles are often subdivided into slow (11.0-13.0 Hz) and fast (13.5-16.0 Hz) frequencies, for which not only different functions have been proposed, but for which also distinctive developmental trajectories have been reported across the first years of life. Recent studies further suggest that information processing during sleep underlying sleep-dependent learning is promoted by the temporal coupling of slow waves and spindles, yet slow wave-spindle coupling remains unexplored in infancy. Thus, we evaluated three potential biomarkers: 1) slow wave slope, 2) spindle density, and 3) the temporal coupling of slow waves with spindles. We use hdEEG to first examine the occurrence and spatial distribution of these three EEG features in healthy infants and second to evaluate a predictive relationship with later behavioral outcomes. We report four key findings: First, infants' EEG features appear locally: slow wave slope is maximal in occipital and frontal areas, whereas slow and fast spindle density is most pronounced frontocentrally. Second, slow waves and spindles are temporally coupled in infancy, with maximal coupling strength in the occipital areas of the brain. Third, slow wave slope, fast spindle density, and slow wave-spindle coupling are not associated with concurrent behavioral status (6 months). Fourth, fast spindle density in central and frontocentral regions at age 6 months predicts overall developmental status at age 12 months, and motor skills at age 12 and 24 months. Neither slow wave slope nor slow wave-spindle coupling predict later behavioral development. We further identified spindle frequency as a determinant of slow and fast spindle density, which accordingly, also predicts motor skills at 24 months. Our results propose fast spindle density, or alternatively spindle frequency, as early EEG biomarker for identifying thalamocortical maturation, which can potentially be used for early diagnosis of neurodevelopmental disorders in infants. These findings are in support of a role of sleep spindles in sensorimotor microcircuitry development. A crucial next step will be to evaluate whether early therapeutic interventions may be effective to reverse deviations in identified individuals at risk

    Bedtime to the brain: how infants’ sleep behaviours intertwine with non‐rapid eye movement sleep electroencephalography features

    Full text link
    SummaryAdequate sleep is critical for development and facilitates the maturation of the neurophysiological circuitries at the basis of cognitive and behavioural function. Observational research has associated early life sleep problems with worse later cognitive, psychosocial, and somatic health outcomes. Yet, the extent to which day‐to‐day sleep behaviours (e.g., duration, regularity) in early life relate to non‐rapid eye movement (NREM) neurophysiology—acutely and the long‐term—remains to be studied. We measured sleep behaviours in 32 healthy 6‐month‐olds assessed with actimetry and neurophysiology with high‐density electroencephalography (EEG) to investigate the association between NREM sleep and habitual sleep behaviours. Our study revealed four findings: first, daytime sleep behaviours are related to EEG slow‐wave activity (SWA). Second, night‐time movement and awakenings from sleep are connected with spindle density. Third, habitual sleep timing is linked to neurophysiological connectivity quantified as delta coherence. And lastly, delta coherence at 6 months predicts night‐time sleep duration at 12 months. These novel findings widen our understanding that infants’ sleep behaviours are closely intertwined with three particular levels of neurophysiology: sleep pressure (determined by SWA), the maturation of the thalamocortical system (spindles), and the maturation of cortical connectivity (coherence). The crucial next step is to extend this concept to clinical groups to objectively characterise infants’ sleep behaviours ‘at risk’ that foster later neurodevelopmental problems

    16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

    Get PDF
    Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R

    A fine balance of synaptophysin levels underlies efficient retrieval of synaptobrevin II to synaptic vesicles

    Get PDF
    Synaptobrevin II (sybII) is a vesicular soluble NSF attachment protein receptor (SNARE) protein that is essential for neurotransmitter release, and thus its correct trafficking to synaptic vesicles (SVs) is critical to render them fusion competent. The SV protein synaptophysin binds to sybII and facilitates its retrieval to SVs during endocytosis. Synaptophysin and sybII are the two most abundant proteins on SVs, being present in a 1:2 ratio. Synaptophysin and sybII are proposed to form a large multimeric complex, and the copy number of the proteins in this complex is also in a 1:2 ratio. We investigated the importance of this ratio between these proteins for the localisation and trafficking of sybII in central neurons. SybII was overexpressed in mouse hippocampal neurons at either 1.6 or 2.15-2.35-fold over endogenous protein levels, in the absence or presence of varying levels of synaptophysin. In the absence of exogenous synaptophysin, exogenous sybII was dispersed along the axon, trapped on the plasma membrane and retrieved slowly during endocytosis. Co-expression of exogenous synaptophysin rescued all of these defects. Importantly, the expression of synaptophysin at nerve terminals in a 1:2 ratio with sybII was sufficient to fully rescue normal sybII trafficking. These results demonstrate that the balance between synaptophysin and sybII levels is critical for the correct targeting of sybII to SVs and suggests that small alterations in synaptophysin levels might affect the localisation of sybII and subsequent presynaptic performance

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion

    Get PDF
    Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10−6). Novel reciprocal case–control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment
    corecore