359 research outputs found
-dimensions Dirac fermions BEC-BCS cross-over thermodynamics
An effective Proca Lagrangian action is used to address the vector
condensation Lorentz violation effects on the equation of state of the strongly
interacting fermions system. The interior quantum fluctuation effects are
incorporated as an external field approximation indirectly through a fictive
generalized Thomson Problem counterterm background. The general analytical
formulas for the -dimensions thermodynamics are given near the unitary limit
region. In the non-relativistic limit for , the universal dimensionless
coefficient and energy gap are
reasonably consistent with the existed theoretical and experimental results. In
the unitary limit for and T=0, the universal coefficient can even
approach the extreme occasion corresponding to the infinite effective
fermion mass which can be mapped to the strongly coupled
two-dimensions electrons and is quite similar to the three-dimensions
Bose-Einstein Condensation of ideal boson gas. Instead, for , the
universal coefficient is negative, implying the non-existence of phase
transition from superfluidity to normal state. The solutions manifest the
quantum Ising universal class characteristic of the strongly coupled unitary
fermions gas.Comment: Improved versio
The Large Magellanic Cloud and the Distance Scale
The Magellanic Clouds, especially the Large Magellanic Cloud, are places
where multiple distance indicators can be compared with each other in a
straight-forward manner at considerable precision. We here review the distances
derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing
Binaries, and show that the results from these distance indicators generally
agree to within their errors, and the distance modulus to the Large Magellanic
Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding
to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing
the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science.
From a presentation at the conference The Fundamental Cosmic Distance Scale:
State of the Art and the Gaia Perspective, Naples, May 201
Planck scale effects in neutrino physics
We study the phenomenology and cosmology of the Majoron (flavon) models of
three active and one inert neutrino paying special attention to the possible
(almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton
charge. Using Planck scale physics effects which provide the breaking of the
lepton charge, we show how in this picture one can incorporate the solutions to
some of the central issues in neutrino physics such as the solar and
atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These
gravitational effects induce tiny Majorana mass terms for neutrinos and
considerable masses for flavons. The cosmological demand for the sufficiently
fast decay of flavons implies a lower limit on the electron neutrino mass in
the range of 0.1-1 eV.Comment: 24 pages, 1 figure (not included but available upon request), LaTex,
IC/92/196, SISSA-140/92/EP, LMU-09/9
Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model
We study the solutions of the gap equation, the thermodynamic potential and
the chiral susceptibility in and beyond the chiral limit at finite chemical
potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation
between the chiral susceptibility and the thermodynamic potential in the NJL
model. We find that the chiral susceptibility is a quantity being able to
represent the furcation of the solutions of the gap equation and the
concavo-convexity of the thermodynamic potential in NJL model. It indicates
that the chiral susceptibility can identify the stable state and the
possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Cold Plus Hot Dark Matter Cosmology in the Light of Solar and Atmospheric Neutrino Oscillations
We explore the implications of possible neutrino oscillations, as indicated
by the solar and atmospheric neutrino experiments, for the cold plus hot dark
matter scenario of large scale structure formation. We find that there are
essentially three distinct schemes that can accommodate the oscillation data
and which also allow for dark matter neutrinos. These include (i) three nearly
degenerate (in mass) neutrinos, (ii) non-degenerate masses with in
the eV range, and (iii) nearly degenerate pair (in the eV
range), with the additional possibility that the electron neutrino is
cosmologically significant. The last two schemes invoke a `sterile' neutrino
which is light (< or ~ eV). We discuss the implications of these schemes for
and oscillation, and find
that scheme (ii) in particular, predicts them to be in the observable range. As
far as structure formation is concerned, we compare the one neutrino flavor
case with a variety of other possibilities, including two and three degenerate
neutrino flavors. We show, both analytically and numerically, the effects of
these neutrino mass scenarios on the amplitude of cosmological density
fluctuations. With a Hubble constant of 50 km s Mpc, a spectral
index of unity, and , the two and three flavor
scenarios fit the observational data marginally better than the single flavor
scheme. However, taking account of the uncertainties in these parameters, we
show that it is premature to pick a clear winner.Comment: 1 LaTEX file plus 1 uuencoded Z-compressed tar file with 3 postscript
figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- âŠ