53 research outputs found

    Exploring the optical properties of La 2 Hf 2 O 7 :Pr 3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications

    Get PDF
    New optical materials with efficient luminescence and scintillation properties have drawn a great deal of attention due to the demand for optoelectronic devices and medical theranostics. Their nanomaterials are expected to reduce the cost while incrementing the efficiency for potential lighting and scintillator applications. In this study, we have developed praseodymium-doped lanthanum hafnate (La2Hf2O7:Pr3+) pyrochlore nanoparticles (NPs) using a combined co-precipitation and relatively low-temperature molten salt synthesis procedure. XRD and Raman investigations confirmed ordered pyrochlore phase for the as-synthesized undoped and Pr3+-doped La2Hf2O7 NPs. The emission profile displayed the involvement of both the 3P0 and 1D2 states in the photoluminescence process, however, the intensity of the emission from the 1D2 states was found to be higher than that from the 3P0 states. This can have a huge implication on the design of novel red phosphors for possible application in solid-state lighting. As a function of the Pr3+ concentration, we found that the 0.1%Pr3+ doped La2Hf2O7 NPs possessed the strongest emission intensity with a quantum yield of 20.54 ± 0.1%. The concentration quenching, in this case, is mainly induced by the cross-relaxation process 3P0 + 3H4 → 1D2 + 3H6. Emission kinetics studies showed that the fast decaying species arise because of the Pr3+ ions occupying the Hf4+ sites, whereas the slow decaying species can be attributed to the Pr3+ ions occupying the La3+ sites in the pyrochlore structure of La2Hf2O7. X-ray excited luminescence (XEL) showed a strong red-light emission, which showed that the material is a promising scintillator for radiation detection. In addition, the photon counts were found to be much higher when the NPs are exposed to X-rays when compared to ultraviolet light. Altogether, these La2Hf2O7:Pr3+ NPs have great potential as a good down-conversion phosphor as well as scintillator material

    Structural evolution and magnetic properties of Gd2Hf2O7 nanocrystals: Computational and experimental investigations

    Get PDF
    Structural evolution in functional materials is a physicochemical phenomenon, which is important from a fundamental study point of view and for its applications in magnetism, catalysis, and nuclear waste immobilization. In this study, we used x-ray diffraction and Raman spectroscopy to examine the Gd2Hf2O7 (GHO) pyrochlore, and we showed that it underwent a thermally induced crystalline phase evolution. Superconducting quantum interference device measurements were carried out on both the weakly ordered pyrochlore and the fully ordered phases. These measurements suggest a weak magnetism for both pyrochlore phases. Spin density calculations showed that the Gd3+ ion has a major contribution to the fully ordered pyrochlore magnetic behavior and its cation antisite. The origin of the Gd magnetism is due to the concomitant shift of its spin-up 4f orbital states above the Fermi energy and its spin-down states below the Fermi energy. This picture is in contrast to the familiar Stoner model used in magnetism. The ordered pyrochlore GHO is antiferromagnetic, whereas its antisite is ferromagnetic. The localization of the Gd-4f orbitals is also indicative of weak magnetism. Chemical bonding was analyzed via overlap population calculations: These analyses indicate that Hf-Gd and Gd-O covalent interactions are destabilizing, and thus, the stabilities of these bonds are due to ionic interactions. Our combined experimental and computational analyses on the technologically important pyrochlore materials provide a basic understanding of their structure, bonding properties, and magnetic behaviors

    Study of aerosol optical properties in Lumbini, Nepal

    Get PDF
    The mixture of different sized particles (fine and coarse) with air composition forms aerosols. Increased economic activities, vehicles, and rapid urbanization made Lumbini one of the heavily polluted regions in Nepal. Data are extracted from AERONET websites between 2013 to 2019 with standard deviation. We are mainly focused on understanding variations in aerosol optical properties: aerosol optical depth (AOD), angstrom parameter (α and β), visibility, single-scattering albedo (SSA), refractive index (real and imaginary), and asymmetry parameter (AP) in the Lumbini region. The maximum value of AOD (675nm) in Lumbini occurred mostly during post-monsoon season (0.61 ± 0.38) whereas, the values of AOD were found to be lower during the monsoon season (0.18 ± 0.12). Most of the AOD values  are found to be greater than 0.4, indicating the higher level of pollution in the study area. There is a positive correlation between perceptible water and AOD, maximum correlation (0.4) occurs at the lowest AOD (440nm) while the minimum (0.1) at the highest AOD (1020nm). The turbidity coefficient (β) has an adverse effect on visibility. The Visibility over Lumbini was found to be highest (20 km) during monsoon. Single-scattering albedo (SSA) accretions occur at wavelengths between 440 and 675 nm, but the pattern changes from 675 to 1020 nm. All parameters were found to be distinct and seasonal fluctuations among this station are mainly due to the different aerosols availability such as biomass burning, mixed aerosols, and anthropogenic aerosols over the Lumbini site

    The stilbene biosynthetic pathway and its regulation in Scots pine

    Get PDF
    Conifers dominate the boreal forests of the Northern Hemisphere, and especially members of the family Pinaceae have great economic and ecological significance. Part of their success is thought to arise from the vast array of secondary metabolites they produce. The products of secondary metabolism are essential for plants to survive in the ever-changing environment. In Scots pine (Pinus sylvestris L.), two groups of secondary metabolites, stilbenes and resin acids, are crucial for decay resistance of heartwood timber and for active defense responses against herbivores and fungal pathogens. Several studies have shown that stilbenes improve decay resistance of pine heartwood. Since there is wide variation in the concentration of stilbenes between individuals and the trait has high heritability, it may be possible to breed heartwood that is more decay-resistant. However, breeding for heartwood properties is slow, since the decay resistance characteristics can be estimated at the earliest from 30-year-old trees. Early selection methods utilizing genetic markers or chemical screening are needed, but we do not yet understand which genes control the biosynthesis of stilbenes and what the genetic differences are between individuals that explain the variation in the capacity to produce stilbenes. Importantly, there is genetic correlation between stress-induced stilbene biosynthesis in seedlings and the heartwood stilbene content in their adult mother trees. Here, we examined the pine transcriptional responses under two conditions that were previously known to activate stilbene biosynthesis: heartwood formation in adult trees and ultraviolet (UV)-C treatment of needles in seedlings. We found that these two conditions had very little in common, except for the activation of stilbene pathway genes. For example, the regulators of the two responses seemed not to be shared. The activation of the stilbene pathway in response to UV-C treatment occurred a few hours after the onset of the treatment and was independent of translation. Stilbene biosynthesis seems to be an early defense response in Scots pine. Heartwood formation, an important developmental process in the senescence of secondary xylem, is poorly understood. Based on transcriptomic analysis, stilbene biosynthesis occurs in situ in the transition zone between the sapwood and heartwood, but resin acids were synthesized primarily in the sapwood. Bifunctional nuclease, an enzyme involved in the process of developmentally programmed cell death (dPCD), is a useful marker for heartwood formation and aided us in defining the timing of the process, from spring to late autumn. Expression of this marker, which is strictly confined to dPCD conditions, further clarified that heartwood formation truly is a process that is initiated by intrinsic programming instead of environmental cues. The transcriptomic data revealed that the expression of the previously characterized pinosylvin O-methyltransferase gene, PMT1, was not induced under stilbene-forming conditions. A new PMT-encoding gene, PMT2, was identified by coexpression analysis. The gene showed an inducible expression pattern very similar to that of the stilbene synthase gene under all conditions studied. PMT2 furthermore methylated pinosylvin with high specificity, in contrast to PMT1, which accepted several substrates.Pohjoisen pallonpuoliskon kasvillisuus on havumetsien hallitsemaa ja etenkin mäntykasvien (Pinaceae) heimoon kuuluu taloudellisesti ja ekologisesti merkittäviä lajeja. Yksi selitys havupuiden menestykselle saattaa olla niiden kyky tuottaa laaja kirjo erilaisia sekundaariyhdisteitä. Männyn (Pinus sylvestris L.) tärkeimpiin sekundaariyhdisteisiin kuuluvat stilbeenit ja terpeenit toimivat puolustuksessa tuholaisia ja patogeenejä vastaan. Aikaisemmat tutkimukset ovat osoittaneet, että aktiivisen puolustuksen lisäksi etenkin stilbeenit parantavat männyn sydänpuun lahonkestävyyttä. Sydänpuun stilbeenien määrä vaihtelee huomattavasti yksilöiden välillä ja ominaisuus on periytyvä, mikä mahdollistaa sydänpuun lahonkestävyyden parantamisen jalostuksen keinoin. Sydänpuun laatuominaisuuksien jalostus on kuitenkin hidasta ja varhaisvalintaan soveltuvien geenimerkkien tunnistaminen nopeuttaisi jalostusprosessia. Emme kuitenkaan vielä tiedä, mitkä geenit säätelevät stilbeenien biosynteesiä ja selittävät erot sydänpuun stilbeenien määrässä. Stilbeenien tuotanto käynnistyy erilaisten stressitekijöiden vaikutuksesta neulasissa ja mantopuussa. Indusoituva tuotanto korreloi sydänpuun stilbeenien määrän kanssa ja tätä voidaan mahdollisesti hyödyntää kemiallisessa seulonnassa taimien varhaisvalinnassa. Tässä väitöskirjassa tutkittiin muutoksia männyn transkriptomissa sydänpuun muodostumisen aikana ja UV-C käsittelyn seurauksena. Stilbeenien biosynteesireitin entsyymejä koodavat geenit aktivoituivat kummassakin tapauksessa, mutta muuten transkriptomeilla oli hyvin vähän yhteistä. Esimerkiksi yhteisiä transkriptiota sääteleviä tekijöitä ei löydetty ja vaikuttaakin siltä, että eri transkriptiofaktorit säätelevät stilbeenien biosynteesireittiä sydänpuun kehityksen aikana ja stressitekijöiden vaikutuksesta. Sydänpuun muodostumisen aikana puussa tapahtuvat kemialliset ja rakenteelliset muutokset tunnetaan joillakin lajeilla hyvin, mutta itse prosessin ajoittuminen sekä käynnistymiseen ja säätelyyn vaikuttavat tekijät ovat vielä suurelta osin tuntemattomia. Stilbeenin biosynteesistä vastaavat geenit ilmenivät vaihettumisvyöhykkeellä mantopuun ja sydänpuun välissä, jossa sydänpuun muodostuminen käynnistyy ja näin tukee aiempaa käsitystä stilbeenien in situ biosynteesistä. Hartsihappojen biosynteesistä vastaavat geenit taas ilmenivät lähinnä mantopuussa, jolloin ne todennäköisesti kuljetetaan vaihettumisvyöhykkeelle sen ulkopuolelta. Ohjelmoidulla solukuolemalla on suuri merkitys sekä kasvin kehityksessä, että stressivasteissa. Bifunktionaalinen nukleaasi (BFN) on entsyymi, joka on yhdistetty aiemmissa tutkimuksissa spesifisesti kasvien kehityksellisiin tapahtumiin. Entsyymiä koodaavan geenin havaittiin ilmenevän ainoastaan vaihettumisvyöhykkeellä. Tämä tukee hypoteesia, jonka mukaan sydänpuun muodostuminen on sisäisesti säädelty eikä ympäristötekijöiden laukaisema tapahtuma. Bifunktionaalinen nukleaasi toimi myös hyödyllisenä markkerina sydänpuun muodostumisen ajoittamisessa keväästä myöhäiseen syksyyn. Transkriptiodata paljasti, että aiemmin tunnistettu stilbeenireitin viimeistä reaktiota katalysoiva metyylitransferaasientsyymiä (PMT1) koodaava geeni ei indusoitunut tutkituissa stilbeenejä tuottavissa olosuhteissa. Tunnistimme uuden metyylitransferaasia koodaavan geenin (PMT2), jonka ekspressioprofiili vastasi stilbeenireitin toisen entsyymin, stilbeenisyntaasin ekspressiota kaikissa tutkituissa olosuhteissa. PMT2 metyloi spesifisesti pinosylviiniä kun taas PMT1 metyloi stilbeenien lisäksi useita rakenteellisesti erilaisia substraatteja

    Burden of injuries in Nepal, 1990–2017: Findings from the Global Burden of Disease Study 2017

    Get PDF
    Background: Nepal is a low-income country undergoing rapid political, economic and social development. To date, there has been little evidence published on the burden of injuries during this period of transition.Methods: The Global Burden of Disease Study (GBD) is a comprehensive measurement of population health outcomes in terms of morbidity and mortality. We analysed the GBD 2017 estimates for deaths, years of life lost, years lived with disability, incidence and disability-adjusted life years (DALYs) from injuries to ascertain the burden of injuries in Nepal from 1990 to 2017.Results: There were 16 831 (95% uncertainty interval 13 323 to 20 579) deaths caused by injuries (9.21% of all-cause deaths (7.45% to 11.25%)) in 2017 while the proportion of deaths from injuries was 6.31% in 1990. Overall, the injury-specific age-standardised mortality rate declined from 88.91 (71.54 to 105.31) per 100 000 in 1990 to 70.25 (56.75 to 85.11) per 100 000 in 2017. In 2017, 4.11% (2.47% to 6.10%) of all deaths in Nepal were attributed to transport injuries, 3.54% (2.86% to 4.08%) were attributed to unintentional injuries and 1.55% (1.16% to 1.85%) were attributed to self-harm and interpersonal violence. From 1990 to 2017, road injuries, falls and self-harm all rose in rank for all causes of death.Conclusions: The increase in injury-related deaths and DALYs in Nepal between 1990 and 2017 indicates the need for further research and prevention interventions. Injuries remain an important public health burden in Nepal with the magnitude and trend of burden varying over time by cause-specific, sex and age group. Findings from this study may be used by the federal, provincial and local governments in Nepal to prioritise injury prevention as a public health agenda and as evidence for country-specific interventions

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Background Ending the global tobacco epidemic is a defining challenge in global health. Timely and comprehensive estimates of the prevalence of smoking tobacco use and attributable disease burden are needed to guide tobacco control efforts nationally and globally. Methods We estimated the prevalence of smoking tobacco use and attributable disease burden for 204 countries and territories, by age and sex, from 1990 to 2019 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We modelled multiple smoking-related indicators from 3625 nationally representative surveys. We completed systematic reviews and did Bayesian meta-regressions for 36 causally linked health outcomes to estimate non-linear dose-response risk curves for current and former smokers. We used a direct estimation approach to estimate attributable burden, providing more comprehensive estimates of the health effects of smoking than previously available. Findings Globally in 2019, 1.14 billion (95% uncertainty interval 1.13-1.16) individuals were current smokers, who consumed 7.41 trillion (7.11-7.74) cigarette-equivalents of tobacco in 2019. Although prevalence of smoking had decreased significantly since 1990 among both males (27.5% [26. 5-28.5] reduction) and females (37.7% [35.4-39.9] reduction) aged 15 years and older, population growth has led to a significant increase in the total number of smokers from 0.99 billion (0.98-1.00) in 1990. Globally in 2019, smoking tobacco use accounted for 7.69 million (7.16-8.20) deaths and 200 million (185-214) disability-adjusted life-years, and was the leading risk factor for death among males (20.2% [19.3-21.1] of male deaths). 6.68 million [86.9%] of 7.69 million deaths attributable to smoking tobacco use were among current smokers. Interpretation In the absence of intervention, the annual toll of 7.69 million deaths and 200 million disability-adjusted life-years attributable to smoking will increase over the coming decades. Substantial progress in reducing the prevalence of smoking tobacco use has been observed in countries from all regions and at all stages of development, but a large implementation gap remains for tobacco control. Countries have a dear and urgent opportunity to pass strong, evidence-based policies to accelerate reductions in the prevalence of smoking and reap massive health benefits for their citizens. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore