424 research outputs found

    Pulmonary phaeohyphomycosis caused by phaeoacremonium in a kidney transplant recipient: Successful treatment with posaconazole

    Get PDF
    We report a rare case of pulmonary phaeohyphomycosis in a 49-year-old woman 6 years after kidney transplantation. She presented with dyspnea, cough, and fatigue. Her chest CT scan revealed nodular opacities in the right upper lung. A fine needle aspirate biopsy culture yielded Phaeoacremonium and surgical pathology of the biopsy showed chronic inflammation. We successfully treated her with posaconazole and managed drug interactions between posaconazole and tacrolimus. This is the second reported case of biopsy-proven pulmonary infection by Phaeoacremonium in a kidney transplant recipient and successfully treated with posaconazole

    Development of technologies to support the diagnosis of infectious diseases and cancer to support the primary health care

    Get PDF
    54/2017). Publisher Copyright: Š 2022, The Author(s).Purpose: Primary Health Care (PHC) is the coordinator of health care in Brazil and needs to be strengthened in the diagnostic field to increase health care quality. Aiming to improve the diagnostic tools currently available in PHC, this work describes the process of development and validation of two point-of-care biomedical devices for screening patients with syphilis or different kinds of cancer. Methods: The development of these devices followed nine stages of action based on the requirements established by the Ministry of Health. During development, both systems followed the stages of circuit planning, software simulation to verify the components used, cost assessment for the acquisition of features, simulation in contact matrix, development of the embedded system, and planning of the printed circuit board and storage box. Results: Both devices underwent preliminary functionality tests to assess their quality. The performance tests applied on the device to diagnose syphilis performed 8,733,194 requests, with a flow of 2426 requests/second, reaching the desired parameters of robustness, integrity, durability, and stability. In addition, functioning tests on the cancer-screening device indicated the ability to detect standard fluorescence in a minimal (150 uL) sample volume. Conclusions: Together, the methodology used for developing the devices resulted in promising equipment to improve the diagnosis and meet the requirements for executing technologies for testing and triaging patients in PHC.publishersversionpublishe

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research

    Get PDF
    Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3×10−22/Hz3.3{\times}1{0}^{-22}/\sqrt{\text{Hz}} at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology.AB acknowledges support from the ANR (project EOSBECMR), IdEx Bordeaux—LAPHIA (project OE-TWR), theQuantERA ERA-NET (project TAIOL) and the Aquitaine Region (projets IASIG3D and USOFF).XZ thanks the China Scholarships Council (No. 201806010364) program for financial support. JJ thanks ‘AssociationNationale de la Recherche et de la Technologie’ for financial support (No. 2018/1565).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grants No. DLR∼50WM1641 (PRIMUS-III), 50WM1952 (QUANTUS-V-Fallturm), and 50WP1700 (BECCAL), 50WM1861 (CAL), 50WM2060 (CARIOQA) as well as 50RK1957 (QGYRO)SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by ‘Niedersächsisches Vorab’ through the ‘Quantum- and Nano-Metrology (QUANOMET)’ initiative within the project QT3, and through ‘Förderung von Wissenschaft und Technik in Forschung und Lehre’ for the initial funding of research in the new DLR-SI Institute, the CRC 1227 DQ-mat within the projects A05 and B07DS gratefully acknowledges funding by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under contract number 13N14875.RG acknowledges Ville de Paris (Emergence programme HSENS-MWGRAV), ANR (project PIMAI) and the Fundamental Physics and Gravitational Waves (PhyFOG) programme of Observatoire de Paris for support. We also acknowledge networking support by the COST actions GWverse CA16104 and AtomQT CA16221 (Horizon 2020 Framework Programme of the European Union).The work was also supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos.∼50WM1556, 50WM1956 and 50WP1706 as well as through the DLR Institutes DLR-SI and DLR-QT.PA-S, MN, and CFS acknowledge support from contracts ESP2015-67234-P and ESP2017-90084-P from the Ministry of Economy and Business of Spain (MINECO), and from contract 2017-SGR-1469 from AGAUR (Catalan government).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 (B2) andCRC1227 ‘DQ-mat’ within projects A05, B07 and B09.LAS thanks Sorbonne Universités (Emergence project LORINVACC) and Conseil Scientifique de l'Observatoire de Paris for funding.This work was realized with the financial support of the French State through the ‘Agence Nationale de la Recherche’ (ANR) in the frame of the ‘MRSEI’ program (Pre-ELGAR ANR-17-MRS5-0004-01) and the ‘Investissement d'Avenir’ program (Equipex MIGA: ANR-11-EQPX-0028, IdEx Bordeaux—LAPHIA: ANR-10-IDEX-03-02).Peer Reviewe

    Silicon particles as trojan horses for potential cancer therapy

    Get PDF
    [EN] Background: Porous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells. Results: We present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents. Conclusions: In our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.The authors acknowledge financial support from the following projects FIS2009-07812, MAT2012-35040, PROMETEO/2010/043, CTQ2011-23167, CrossSERS, FP7 MC-IEF 329131, and HSFP (project RGP0052/2012) and Medcom Tech SA. Xiang Yu acknowledges support by the Chinese government (CSC, Nr. 2010691036).Fenollosa Esteve, R.; Garcia-Rico, E.; Alvarez, S.; Alvarez, R.; Yu, X.; Rodriguez, I.; Carregal-Romero, S.... (2014). Silicon particles as trojan horses for potential cancer therapy. Journal of Nanobiotechnology. 12:1-10. https://doi.org/10.1186/s12951-014-0035-7S11012Prasad PN: Introduction to Nanomedicine and Nanobioengineering. Wiley, New York, 2012.Randall CL, Leong TG, Bassik N, Gracias DH: 3D lithographically fabricated nanoliter containers for drug delivery. Adv Drug Del Rev. 2007, 59: 1547-1561. 10.1016/j.addr.2007.08.024.Reibetanz U, Chen MHA, Mutukumaraswamy S, Liaw ZY, Oh BHL, Venkatraman S, Donath E, Neu BR: Colloidal DNA carriers for direct localization in cell compartments by pH sensoring. Biogeosciences. 2010, 11: 1779-1784.Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nano. 2008, 3: 151-157. 10.1038/nnano.2008.34.Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009, 8: 331-336. 10.1038/nmat2398.Hong C, Lee J, Son M, Hong SS, Lee C: In-vivo cancer cell destruction using porous silicon nanoparticles. Anti-Cancer Drugs. 2011, 22: 971-977. 910.1097/CAD.1090b1013e32834b32859cCanham LT: Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7. Book Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7 (Editor ed.^eds.). 2003, UK Patent Nr. 0302283.7, CityXiao L, Gu L, Howell SB, Sailor MJ: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano. 2011, 5: 3651-3659. 10.1021/nn1035262.Gil PR, Parak WJ: Composite nanoparticles take Aim at cancer. ACS Nano. 2008, 2: 2200-2205. 10.1021/nn800716j.Gomella LG: Is interstitial hyperthermia a safe and efficacious adjunct to radiotherapy for localized prostate cancer?. Nat Clin Pract Urol. 2004, 1: 72-73. 10.1038/ncpuro0041.Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011, 103: 317-324. 10.1007/s11060-010-0389-0.Lal S, Clare SE, Halas NJ: Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res. 2008, 41: 1842-1851. 10.1021/ar800150g.Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI: Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem. 2008, 18: 4790-4795. 10.1039/b808500e.Osminkina LA, Gongalsky MB, Motuzuk AV, Timoshenko VY, Kudryavtsev AA: Silicon nanocrystals as photo- and sono-sensitizers for biomedical applications. Appl Phys B. 2011, 105: 665-668. 10.1007/s00340-011-4562-8.Jain PK, Huang X, El-Sayed IH, El-Sayed MA: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008, 41: 1578-1586. 10.1021/ar7002804.Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M: Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 1810, 2011: 317-329.Xu R, Huang Y, Mai J, Zhang G, Guo X, Xia X, Koay EJ, Qin G, Erm DR, Li Q, Liu X, Ferrari M, Shen H: Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small. 2013, 9: 1799-1808. 10.1002/smll.201201510.Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ: Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small. 2011, 7: 2061-2069. 10.1002/smll.201100438.Xue M, Zhong X, Shaposhnik Z, Qu Y, Tamanoi F, Duan X, Zink JI: pH-operated mechanized porous silicon nanoparticles. J Am Chem Soc. 2011, 133: 8798-8801. 10.1021/ja201252e.Canham LT: Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater. 1995, 7: 1033-1037. 10.1002/adma.19950071215.Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Cresswell RG, Di Tada ML, Liu K: Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorganic Biochem. 1998, 69: 177-180. 10.1016/S0162-0134(97)10016-2.Shabir Q, Pokale A, Loni A, Johnson DR, Canham LT, Fenollosa R, Tymczenko M, Rodr guez I, Meseguer F, Cros A, Cantarero A: Medically biodegradable hydrogenated amorphous silicon microspheres. Silicon. 2011, 3: 173-176. 10.1007/s12633-011-9097-4.Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z: Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed. 2011, 6: 2321-2326.Mackowiak SA, Schmidt A, Weiss V, Argyo C, von Schirnding C, Bein T, Bräuchle C: Targeted drug delivery in cancer cells with Red-light photoactivated mesoporous silica nanoparticles. Nano Lett. 2013, 13: 2576-2583. 10.1021/nl400681f.Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI: Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012, 41: 2590-2605. 10.1039/c1cs15246g.O Mara WC, Herring B, Hunt P: Handbook of Semiconductor Silicon Technology. Noyes Publication, New Jersey, 1990.Mikulec FV, Kirtland JD, Sailor MJ: Explosive nanocrystalline porous silicon and its Use in atomic emission spectroscopy. Adv Mater. 2002, 14: 38-41. 10.1002/1521-4095(20020104)14:13.0.CO;2-Z.Clement D, Diener J, Gross E, Kunzner N, Timoshenko VY, Kovalev D: Highly explosive nanosilicon-based composite materials. Phys Stat Sol A. 2005, 202: 1357-1359. 10.1002/pssa.200461102.Canham LT: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990, 57: 1046-1049. 10.1063/1.103561.Canham LT: Properties of Porous Silicon. INSPEC, United Kindom, 1997.Heinrich JL, Curtis CL, Credo GM, Sailor MJ, Kavanagh KL: Luminescent colloidal silicon suspensions from porous silicon. Science. 1992, 255: 66-68. 10.1126/science.255.5040.66.Littau KA, Szajowski PJ, Muller AJ, Kortan AR, Brus LE: A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J Phys Chem. 1993, 97: 1224-1230. 10.1021/j100108a019.Menz WJ, Shekar S, Brownbridge GPE, Mosbach S, Kōrmer R, Peukert W, Kraft M: Synthesis of silicon nanoparticles with a narrow size distribution: a theoretical study. J Aerosol Sci. 2012, 44: 46-61. 10.1016/j.jaerosci.2011.10.005.Swihart MT, Girshick SL: Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane. J Phys Chem B. 1998, 103: 64-76. 10.1021/jp983358e.Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F: Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. J Mater Chem. 2010, 20: 5210-5214. 10.1039/c0jm00079e.Ramiro-Manzano F, Fenollosa R, Xifré-Pérez E, Garín M, Meseguer F: Porous silicon microcavities based photonic barcodes. Adv Mater. 2011, 23: 3022-3025. 10.1002/adma.201100986.Kastl L, Sasse D, Wulf V, Hartmann R, Mircheski J, Ranke C, Carregal-Romero S, Martínez-López JA, Fernández-Chacón R, Parak WJ, Elsasser HP, Rivera-Gil P: Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. ACS Nano. 2013, 7: 6605-6618. 10.1021/nn306032k.Schweiger C, Hartmann R, Zhang F, Parak W, Kissel T, Rivera_Gil P: Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotech. 2012, 10: 28-10.1186/1477-3155-10-28.Sanles-Sobrido M, Exner W, Rodr guez-Lorenzo L, Rodríguez-Gonzílez B, Correa-Duarte MA, Álvarez-Puebla RA, Liz-Marzán LM: Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc. 2009, 131: 2699-2705. 10.1021/ja8088444.Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011, 365: 1273-1283. 10.1056/NEJMoa0910383.Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G: Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol. 2005, 23: 2534-2543. 10.1200/JCO.2005.03.184.Colombo M, Mazzucchelli S, Montenegro JM, Galbiati E, Corsi F, Parak WJ, Prosperi D: Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small. 2012, 8: 1492-1497. 10.1002/smll.201102284.Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX: Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004, 5: 317-328. 10.1016/S1535-6108(04)00083-2.Paris L, Cecchetti S, Spadaro F, Abalsamo L, Lugini L, Pisanu ME, Lorio E, Natali PG, Ramoni C, Podo F: Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells. Breast Cancer Res. 2010, 12: R27-10.1186/bcr2575.Fenollosa R, Meseguer F, Tymczenko M: Silicon colloids: from microcavities to photonic sponges. Adv Mater. 2008, 20: 95-98. 10.1002/adma.200701589.Jasinski JM, Gates SM: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry. Acc Chem Res. 1991, 24: 9-15. 10.1021/ar00001a002.Xiao Q, Liu Y, Qiu Y, Zhou G, Mao C, Li Z, Yao Z-J, Jiang S: Potent antitumor mimetics of annonaceous acetogenins embedded with an aromatic moiety in the left hydrocarbon chain part. J Med Chem. 2010, 54: 525-533. 10.1021/jm101053k.Allman SA, Jensen HH, Vijayakrishnan B, Garnett JA, Leon E, Liu Y, Anthony DC, Sibson NR, Feizi T, Matthews S, Davis BG: Potent fluoro-oligosaccharide probes of adhesion in toxoplasmosis. ChemBioChem. 2009, 10: 2522-2529. 10.1002/cbic.200900425.Chambers DJ, Evans GR, Fairbanks AJ: Elimination reactions of glycosyl selenoxides. Tetrahedron. 2004, 60: 8411-8419. 10.1016/j.tet.2004.07.005.Tomabechi Y, Suzuki R, Haneda K, Inazu T: Chemo-enzymatic synthesis of glycosylated insulin using a GlcNAc tag. Bioorg Med Chem. 2010, 18: 1259-1264. 10.1016/j.bmc.2009.12.031.Pastoriza-Santos I, Gomez D, Perez-Juste J, Liz-Marzan LM, Mulvaney P: Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Phys Chem Chem Phys. 2004, 6: 5056-5060. 10.1039/b405157b

    An r -process enhanced star in the dwarf galaxy Tucana III

    Get PDF
    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66−593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain rprocess enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them
    • …
    corecore