16 research outputs found

    A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer

    Get PDF
    Gemcitabine is currently the standard therapy for pancreatic cancer. However, growing concerns over gemcitabine resistance mean that new combinatory therapies are required to prevent loss of efficacy with prolonged treatment. Here, we suggest that this could be achieved through co-administration of RNA interference agents targeting the ubiquitin ligase ITCH. Stable anti-ITCH siRNA and shRNA dendriplexes with a desirable safety profile were prepared using generation 3 poly(propylenimine) dendrimers (DAB-Am16). The complexes were efficiently taken up by human pancreatic cancer cells and produced a 40-60% decrease in ITCH RNA and protein expression in vitro (si/shRNA) and in a xenograft model of pancreatic cancer (shRNA). When co-administered with gemcitabine (100 mg/kg/week) at a subtherapeutic dose, treatment with ITCH-shRNA (3x 50 mg/week) was able to fully suppress tumour growth for 17 days, suggesting that downregulation of ITCH mediated by DABAm16/shRNA sensitizes pancreatic cancer to gemcitabine in an efficient and specific manner

    Parameters influencing the size of chitosan-TPP nano- and microparticles

    Get PDF
    Chitosan nanoparticles, produced by ionic gelation, are among the most intensely studied nanosystems for drug delivery. However, a lack of inter-laboratory reproducibility and a poor physicochemical understanding of the process of particle formation have been slowing their potential market applications. To address these shortcomings, the current study presents a systematic analysis of the main polymer factors affecting the nanoparticle formation driven by an initial screening using systematic statistical Design of Experiments (DoE). In summary, we found that for a given chitosan to TPP molar ratio, the average hydrodynamic diameter of the particles formed is strongly dependent on the initial chitosan concentration. The degree of acetylation of the chitosan was found to be the second most important factor involved in the system's ability to form particles. Interestingly, viscosimetry studies indicated that the particle formation and the average hydrodynamic diameter of the particles formed were highly dependent on the presence or absence of salts in the medium. In conclusion, we found that by controlling two simple factors of the polymer solution, namely its initial concentration and its solvent environment, it is feasible to control in a reproducible manner the production and characteristics of chitosan particles ranging in size from nano- to micrometres

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Preparation of Polymeric Micelles of Poly(Ethylene Oxide-b-Lactic Acid) and their Encapsulation With Lavender Oil

    No full text
    Nanoparticles comprised of the poly(ethylene oxide)-b-poly (lactic acid) diblock copolymer (PEO-b-PLA) with and without the incorporation of lavender oil were prepared by nanoprecipitation. Diblock copolymers based on a fixed PEO block (5KDa) and two different PLA segments (4.5 or 10KDa) were used. The morphology, encapsulation efficiency, essential oil-polymer interaction and the release kinetics of the active agent in the nanoparticles, were evaluated. The hydrodynamic radius of the nanoparticles determined by light scattering was affected by the size of the poly(lactic acid) (PLA) block. The lavender essential oil encapsulation efficiency (at a concentration of 0.4 µL mL-1) determined by UV-VIS spectroscopy was in the range of 70-75%. The in vitro release suggests that the polymeric barrier is able to control the oil release
    corecore