409 research outputs found

    Bacteriophages as a model for studying carbon regulation in aquatic system

    Get PDF
    The interconversion of carbon in organic, inorganic and refractory carbon is still beyond the grasp of present environmentalists. The bacteria and their phages, being the most abundant constituents of the aquatic environment, represent an ideal model for studing carbon regulation in the aquatic system. The refractory dissolved organic carbon (DOC), a recently coined terminology from the microbe-driven conversion of bioavailable organic carbon into difficult-to-digest refractory DOC by microbial carbon pump (MCP), is suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that about 95% of organic carbon is in the form of refractory DOC, which is the largest pool of organic matter in the ocean. The refractory DOC is supposed to be the major factor in the global carbon cycle whose source is not yet well understood. A key element of the carbon cycle is the microbial conversion of dissolved organic carbon into inedible forms. The time studies of phage-host interaction under control conditions reveal their impact on the total carbon content of the source and their interconversion among organic, inorganic and other forms of carbon with respect to control source. The TOC- analysis statistics stipulate an increase in inorganic carbon content by 15-25 percent in the sample with phage as compared to the sample without phage. The results signify a 60-70 fold increase in inorganic carbon content in sample with phage, whereas, 50-55 fold in the case of sample without phages as compared with control. This increase in inorganic carbon content may be due to lysis of the host cell releasing its cellular constituents and utilization of carbon constituent for phage assembly and development. It also proves the role of phages in regulating the carbon flow in aquatic systems like oceans, where their concentration outnumbered other species

    Solidification and stabilization of chromium laden wastes in cementitious binders

    Get PDF
    Solidification/stabilization (S/S) technology was applied to a simulated sludge containing chromium. Leaching tests such as toxicity characteristic leaching procedure (TCLP), ANS 16.1 and multiple TCLP tests conducted on stabilized blocks showed that chromium was immobilized by the binder studied. A linear relationship was obtained between the cumulative fraction of chromium leached and time1/2 in the stabilized samples proving that chromium is leached by diffusion. The leachability indices obtained for the solidified materials satisfy the guidance value as per US Nuclear Regulatory Commission. Chromium concentrations in the TCLP leachates were well within the regulatory levels of the United States Environmental Protection Agency. Microchemistry and morphology of the stabilized samples were studied using Fourier transformation infrared (FTIR) technique and scanning electron microscopy (SEM). FTIR confirms the presence of ν2 CO3 band and O–H stretching of Ca(OH)2 and SEM shows uniform dense crystalline morphologies in all the samples. X-ray diffraction indicates the presence of bentorite, which proves that Cr replaces Al in the ettringit

    Bacteriophages as a model for studying carbon regulation in aquatic system

    Get PDF
    The interconversion of carbon in organic, inorganic and refractory carbon is still beyond the grasp of present environmentalists. The bacteria and their phages being the most abundant constituents of the aquatic environment, represents an ideal model for studing carbon regulation in aquatic system. The refractory dissolved organic carbon (DOC) a recently coined terminology from the microbe-driven conversion of bioavailable organic carbon into difficult-to-digest refractory DOC by microbial carbon pump (MCP) is suggested to have potential to revolutionize our view of carbon sequestration. It is estimated that about 95% of organic carbon is in the form of refractory DOC which is the largest pool of organic matter in the ocean. The refractory DOC is supposed to be the major factor in the global carbon cycle whose source is not yet well understood. A key element of the carbon cycle is the microbial conversion of dissolved organic carbon into inedible forms. The time studies of phagehost interaction under control conditions reveals their impact on the total carbon content of the source and their interconversion among organic, inorganic and other forms of carbon with respect to control source. The TOC- analysis statistics stipulate increase in inorganic carbon content by 15-25 percent in the sample with phage as compared to sample without phage. The results signify 60-70 fold increase in inorganic carbon content in sample with phage, whereas,50-55 fold in the case of sample without phages as compared with control. This increase in inorganic carbon content may be due to lysis of the host cell releasing its cellular constituents and utilization of carbon constituent for phage assembly and development. It also provesthe role of phages in regulating the carbon flow in the aquatic systems like oceans where their concentration outnumbered other species

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Dissociation Protocols Used for Sarcoma Tissues Bias the Transcriptome Observed in Single-Cell and Single-Nucleus RNA Sequencing

    Get PDF
    BACKGROUND: Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their individual cellular constituents has also created new opportunities to generate single-cell atlases for many organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue processing, cell disaggregation, and preservation can significantly bias gene expression and alter the observed cell types. To determine whether sarcomas - tumors of mesenchymal origin - are subject to the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three aggressive subtypes: osteosarcoma (OS), Ewing sarcoma (ES), desmoplastic small round cell tumor (DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from more widely available archival frozen specimens could accurately be identified by gene expression signatures linked to tissue phenotype or pathognomonic fusion proteins. RESULTS: We systematically assessed dissociation methods across different sarcoma subtypes. We compared gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei from ES, DSRCT, and OS PDXs. We detected warm dissociation artifacts in single-cell samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were observed regardless of the dissociation method. In addition, we showed that dissociation method biases could be computationally corrected. CONCLUSIONS: We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by the dissociation method for various sarcoma subtypes. This work is the first to characterize how the dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in sarcoma PDXs

    Cohort for Tuberculosis Research by the Indo-US Medical Partnership (CTRIUMPH): protocol for a multicentric prospective observational study

    Get PDF
    INTRODUCTION: Tuberculosis disease (TB) remains an important global health threat. An evidence-based response, tailored to local disease epidemiology in high-burden countries, is key to controlling the global TB epidemic. Reliable surrogate biomarkers that predict key active disease and latent TB infection outcomes are vital to advancing clinical research necessary to ‘End TB’. Well executed longitudinal studies strengthening local research capacity for addressing TB research priorities and advancing biomarker discovery are urgently needed. METHODS AND ANALYSIS: The Cohort for Tuberculosis Research by the Indo-US Medical Partnership (CTRIUMPH) study conducted in Byramjee Jeejeebhoy Government Medical College (BJGMC), Pune and National Institute for Research in Tuberculosis (NIRT), Chennai, India, will establish and maintain three prospective cohorts: (1) an Active TB Cohort comprising 800 adults with pulmonary TB, 200 adults with extrapulmonary TB and 200 children with TB; (2) a Household Contact Cohort of 3200 adults and children at risk of developing active disease; and (3) a Control Cohort consisting of 300 adults and 200 children with no known exposure to TB. Relevant clinical, sociodemographic and psychosocial data will be collected and a strategic specimen repository established at multiple time points over 24 months of follow-up to measure host and microbial factors associated with (1) TB treatment outcomes; (2) progression from infection to active TB disease; and (3) Mycobacterium tuberculosis transmission among Indian adults and children. We anticipate CTRIUMPH to serve as a research platform necessary to characterise some relevant aspects of the TB epidemic in India, generate evidence to inform local and global TB control strategies and support novel TB biomarker discovery. ETHICS AND DISSEMINATION: This study is approved by the Institutional Review Boards of NIRT, BJGMC and Johns Hopkins University, USA. Study results will be disseminated through peer-reviewed journals and research conferences. FUNDING: NIH/DBT Indo-US Vaccine Action Programme and the Indian Council of Medical Research

    Measurement of associated W plus charm production in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Measurements of jet multiplicity and differential production cross sections of Z+jets events in proton-proton collisions at sqrt(s)=7TeV

    Get PDF
    Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at root s = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 fb(-1). The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. The measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.Austrian Federal Ministry of Science, Research and EconomyAustrian Science FundBelgian Fonds de la Recherche ScientifiqueFonds voor Wetenschappelijk OnderzoekConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Bulgarian Ministry of Education and ScienceCERNChinese Academy of SciencesMinistry of Science and TechnologyNational Natural ScienceFoundationofChinaColombian FundingAgency (COLCIENCIAS)Croatian Ministry of Science, Education, and SportCroatian Science FoundationResearch Promotion Foundation, CyprusMinistry of Education and Research, EstoniaEstonian Research Council, EstoniaEuropean Regional Development Fund, EstoniaAcademy of FinlandFinnish Ministry of Education and CultureHelsinki Institute of PhysicsInstitut National de Physique Nucleaire et de Physique des Particules / CNRS, FranceCommissariat a l&apos;Energie Atomique et aux Energies Alternatives / CEA, FranceBundesministerium fur Bildung und Forschung, GermanyDeutsche Forschungsgemeinschaft, GermanyHelmholtz-Gemeinschaft Deutscher Forschungs zentren, GermanyGeneral Secretariat for Research and Technology, GreeceNational Scientific Research Foundation, HungaryNational Innovation Office, HungaryDepartment of Atomic Energy, IndiaDepartment of Science and Technology, IndiaInstitute for Studies in Theoretical Physics and Mathematics, IranScience Foundation, IrelandIstituto Nazionale di Fisica Nucleare, ItalyKorean Ministry of Education, Science and Technology, Republic of KoreaWorld Class University program of NRF, Republic of KoreaLithuanian Academy of SciencesMinistry of Education, and University of Malaya (Malaysia)Mexican Funding Agency (CINVESTAV)Mexican Funding Agency (CONACYT)Mexican Funding Agency (SEP)Mexican Funding Agency (UASLP-FAI)Ministry of Business, Innovation and Employment, New ZealandPakistan Atomic Energy CommissionMinistry of Science and Higher Education, PolandNational Science Centre, PolandFundacao para a Cienciaea Tecnologia, PortugalJINR, DubnaMinistry of Education and Science of the Russian FederationFederal Agency of Atomic Energy of the Russian FederationRussian Academy of SciencesRussian Foundation for Basic ResearchMinistry of Education, Science and Technological Development of SerbiaSecretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, SpainSwiss Funding Agency (ETH Board)Swiss Funding Agency (ETH Zurich)Swiss Funding Agency (PSI)Swiss Funding Agency (SNF)Swiss Funding Agency (UniZH)Swiss Funding Agency (Canton Zurich)Swiss Funding Agency (SER)Ministry of Science and Technology, TaipeiThailand Center of Excellence in PhysicsInstitute for the Promotion of Teaching Science andTechnologyofThailandSpecialTaskForceforActivating ResearchNational Science and Technology Development Agency of ThailandScientific and Technical Research Council of TurkeyTurkish Atomic Energy AuthorityNational Academy of Sciences of Ukraine, UkraineState Fund for Fundamental Researches, UkraineScience and Technology Facilities Council, United KingdomU.S. Department of EnergyU.S. National Science FoundationMarie Curie programEuropean Research CouncilEPLANET (European Union)Leventis FoundationA. P. Sloan FoundationAlexander von Humboldt FoundationBelgian Federal Science Policy OfficeFonds pour la Formation a la Recherche dans l&apos;Industrie et dans l&apos;Agriculture (FRIA-Belgium)Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)Ministry of Education, Youth and Sports (MEYS) of the Czech RepublicCouncil ofScienceandIndustrialResearch, IndiaHOMINGPLUS program of Foundation for Polish ScienceEuropean UnionRegional Development FundCompagnia di San Paolo (Torino)Consorzio per la Fisica (Trieste)MIUR (Italy)Thalis and Aristeia programsEU-ESFGreekNSRFNationalPrioritiesResearchProgram by Qatar National Research FundYerevan Phys Inst, Yerevan 375036, ArmeniaInst Hochenergiephys OeAW, Vienna, AustriaNatl Ctr Particle &High Energy Phys, Minsk, ByelarusUniv Antwerp, Antwerp, BelgiumVrije Univ Brussel, Brussels, BelgiumUniv Libre Bruxelles, Brussels, BelgiumUniv Ghent, B-9000 Ghent, BelgiumCatholic Univ Louvain, Louvain La Neuve, BelgiumUniv Mons, B-7000 Mons, BelgiumCtr Brasileiro Pesquisas Fis, Rio De Janeiro, BrazilUniv Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, BrazilUniv Estadual Paulista, Sao Paulo, BrazilUniv Fed ABC, Sao Paulo, BrazilInst Nucl Energy Res, Sofia, BulgariaUniv Sofia, BU-1126 Sofia, BulgariaInst High Energy Phys, Beijing 100039, Peoples R ChinaPeking Univ, State Key Lab Nucl Phys &Technol, Beijing 100871, Peoples R ChinaUniv Los Andes, Bogota, ColombiaUniv Split, Fac Elect Engn, Mech Engn &Naval Architecture, Split, CroatiaUniv Split, Fac Sci, Split, CroatiaRudjer Boskovic Inst, Zagreb, CroatiaUniv Cyprus, CY-1678 Nicosia, CyprusCharles Univ Prague, Prague, Czech RepublicAcad Sci Res &Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, EgyptNICPB, Tallinn, EstoniaUniv Helsinki, Dept Phys, Helsinki, FinlandHelsinki Inst Phys, Helsinki, FinlandLappeenranta Univ Technol, Lappeenranta, FinlandCEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, FranceEcole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, FranceUniv Strasbourg, Univ Haute Alsace Mulhouse, Inst Puridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, FranceCtr Calcul Inst Natl Phys Nucl &Phys Particules, CNRS IN2P3, Villeurbanne, FranceUniv Lyon 1, Univ Lyon, Inst Phys Nucl Lyon, CNRS IN2P3, F-69622 Villeurbanne, FranceTbilisi State Univ, Inst High Energy Phys &Informatizat, GE-380086 Tbilisi, Rep of GeorgiaRWTH Aachen Univ I, Inst Phys, Aachen, GermanyRWTH Aachen Univ III, Phys Inst A, Aachen, GermanyRWTH Aachen Univ III, Phys Inst B, Aachen, GermanyDESY, Hamburg, GermanyUniv Hamburg, Hamburg, GermanyInst Expt Kernphys, Karlsruhe, GermanyNCSR Demokritos, Inst Nucl &Particle Phys, Aghia Paraskevi, GreeceUniv Athens, Athens, GreeceUniv Ioannina, GR-45110 Ioannina, GreeceWigner Res Ctr Phys, Budapest, HungaryInst Nucl Res ATOMKI, Debrecen, HungaryUniv Debrecen, Debrecen, HungaryNatl Inst Sci Educ &Res, Bhubaneswar, Orissa, IndiaPanjab Univ, Chandigarh 160014, IndiaUniv Delhi, Delhi 110007, IndiaSaha Inst Nucl Phys, Kolkata, IndiaBhabha Atom Res Ctr, Mumbai 400085, Maharashtra, IndiaTata Inst Fundamental Res, Mumbai 400005, Maharashtra, IndiaInst Res Fundamental Sci IPM, Tehran, IranUniv Coll Dublin, Dublin 2, IrelandIst Nazl Fis Nucl, Sez Bari, I-70126 Bari, ItalyUniv Bari, Bari, ItalyPolitecn Bari, Bari, ItalyIst Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, ItalyUniv Bologna, Bologna, ItalyIst Nazl Fis Nucl, Sez Catania, I-95129 Catania, ItalyUniv Catania, Catania, ItalyCSFNSM, Catania, ItalyIst Nazl Fis Nucl, Sez Firenze, I-50125 Florence, ItalyUniv Florence, Florence, ItalyIst Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, ItalyIst Nazl Fis Nucl, Sez Genova, I-16146 Genoa, ItalyUniv Genoa, Genoa, ItalyIst Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, ItalyUniv Milano Bicocca, Milan, ItalyIst Nazl Fis Nucl, Sez Napoli, I-80125 Naples, ItalyUniv Naples Federico II, Naples, ItalyUniv Basilicata Potenza, Naples, ItalyUniv G Marconi Roma, Naples, ItalyIst Nazl Fis Nucl, Sez Padova, Padua, ItalyUniv Padua, Padua, ItalyUniv Trento, Padua, ItalyIst Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, ItalyUniv Pavia, I-27100 Pavia, ItalyIst Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, ItalyUniv Perugia, I-06100 Perugia, ItalyIst Nazl Fis Nucl, Sez Pisa, Pisa, ItalyUniv Pisa, Pisa, ItalyScuola Normale Super Pisa, Pisa, ItalyIst Nazl Fis Nucl, Sez Roma, Rome, ItalyUniv Rome, Rome, ItalyIst Nazl Fis Nucl, Sez Torino, I-10125 Turin, ItalyUniv Turin, Turin, ItalyUniv Piemonte Orientale Novara, Turin, ItalyIst Nazl Fis Nucl, Sez Trieste, Trieste, ItalyUniv Trieste, Trieste, ItalyKangwon Natl Univ, Chunchon, South KoreaKyungpook Natl Univ, Daegu, South KoreaChonbuk Natl Univ, Jeonju 561756, South KoreaChonnam Natl Univ, Inst Univ &Elementary Particles, Kwangju, South KoreaKorea Univ, Seoul, South KoreaUniv Seoul, Seoul, South KoreaSungkyunkwan Univ, Suwon, South KoreaVilnius Univ, Vilnius, LithuaniaUniv Malaya, Natl Ctr Particle Phys, Kuala Lumpur, MalaysiaCtr Invest &Estudios Avanzados, IPN, Mexico City, DF, MexicoUniv Iberoamer, Mexico City, DF, MexicoBenemerita Univ Autonoma Puebla, Puebla, MexicoUniv Autonoma San Luis Potosi, San Luis Potosi, MexicoUniv Auckland, Auckland 1, New ZealandUniv Canterbury, Christchurch 1, New ZealandQuaid I Azam Univ, Natl Ctr Phys, Islamabad, PakistanNatl Ctr Nucl Res, Otwock, PolandUniv Warsaw, Fac Phys, Inst Expt Phys, Warsaw, PolandLab Instrumentacao &Fis Expt Particulas, Lisbon, PortugalJoint Inst Nucl Res, Dubna, RussiaPetersburg Nucl Phys Inst, St Petersburg, RussiaRussian Acad Sci, Inst Nucl Res, Moscow 117312, RussiaInst Theoret &Expt Phys, Moscow 117259, RussiaPN Lebedev Phys Inst, Moscow 117924, RussiaMoscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, RussiaInst High Energy Phys, State Res Ctr Russian Federat, Protvino, RussiaUniv Belgrade, Fac Phys, Belgrade 11001, SerbiaVinca Inst Nucl Sci, Belgrade, SerbiaCIEMAT, E-28040 Madrid, SpainUniv Autonoma Madrid, Madrid, SpainUniv Oviedo, Oviedo, SpainUniv Cantabria, CSIC, IFCA, E-39005 Santander, SpainCERN, European Org Nucl Res, CH-1211 Geneva, SwitzerlandPaul Scherrer Inst, Villigen, SwitzerlandETH, Inst Particle Phys, Zurich, SwitzerlandUniv Zurich, Zurich, SwitzerlandNatl Cent Univ, Chungli 32054, TaiwanNatl Taiwan Univ, Taipei 10764, TaiwanChulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, ThailandCukurova Univ, Adana, TurkeyMiddle E Tech Univ, Dept Phys, TR-06531 Ankara, TurkeyBogazici Univ, Istanbul, TurkeyIstanbul Tech Univ, TR-80626 Istanbul, TurkeyKharkov Phys &Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, UkraineUniv Bristol, Bristol, Avon, EnglandRutherford Appleton Lab, Didcot OX11 0QX, Oxon, EnglandUniv London Imperial Coll Sci Technol &Med, London, EnglandBrunel Univ, Uxbridge UB8 3PH, Middx, EnglandBaylor Univ, Waco, TX 76798 USAUniv Alabama, Tuscaloosa, AL USABoston Univ, Boston, MA 02215 USABrown Univ, Providence, RI 02912 USAUniv Calif Davis, Davis, CA 95616 USAUniv Calif Los Angeles, Los Angeles, CA USAUniv Calif Riverside, Riverside, CA 92521 USAUniv Calif San Diego, La Jolla, CA 92093 USAUniv Calif Santa Barbara, Santa Barbara, CA 93106 USACALTECH, Pasadena, CA 91125 USACarnegie Mellon Univ, Pittsburgh, PA 15213 USAUniv Colorado, Boulder, CO 80309 USACornell Univ, Ithaca, NY USAFairfield Univ, Fairfield, CT 06430 USAFermilab Natl Accelerator Lab, Batavia, IL 60510 USAUniv Florida, Gainesville, FL USAFlorida Int Univ, Miami, FL 33199 USAFlorida State Univ, Tallahassee, FL 32306 USAFlorida Inst Technol, Melbourne, FL 32901 USAUniv Illinois, Chicago, IL USAUniv Iowa, Iowa City, IA USAJohns Hopkins Univ, Baltimore, MD USAUniv Kansas, Lawrence, KS 66045 USAKansas State Univ, Manhattan, KS 66506 USALawrence Livermore Natl Lab, Livermore, CA USAUniv Maryland, College Pk, MD 20742 USAMIT, Cambridge, MA 02139 USAUniv Minnesota, Minneapolis, MN USAUniv Mississippi, Oxford, MS USAUniv Nebraska, Lincoln, NE USASUNY Buffalo, Buffalo, NY 14260 USANortheastern Univ, Boston, MA 02115 USANorthwestern Univ, Evanston, IL USAUniv Notre Dame, Notre Dame, IN 46556 USAOhio State Univ, Columbus, OH 43210 USAPrinceton Univ, Princeton, NJ 08544 USAUniv Puerto Rico, Mayaguez, PR USAPurdue Univ, W Lafayette, IN 47907 USAPurdue Univ Calumet, Hammond, LA USARice Univ, Houston, TX USAUniv Rochester, Rochester, NY 14627 USARockefeller Univ, New York, NY 10021 USARutgers State Univ, Piscataway, NJ USAUniv Tennessee, Knoxville, TN USATexas A&amp;M Univ, College Stn, TX USATexas Tech Univ, Lubbock, TX 79409 USAVanderbilt Univ, Nashville, TN 37235 USAUniv Virginia, Charlottesville, VA USAWayne State Univ, Detroit, MI USAUniv Wisconsin, Madison, WI 53706 USAVienna Univ Technol, A-1040 Vienna, AustriaUniv Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, FranceUniv Estadual Campinas, Campinas, SP, BrazilSuez Univ, Suez, EgyptCairo Univ, Cairo, EgyptFayoum Univ, Al Fayyum, EgyptBritish Univ Egypt, Cairo, EgyptAin Shams Univ, Cairo, EgyptUniv Haute Alsace, Mulhouse, FranceBrandenburg Tech Univ Cottbus, Cottbus, GermanyInst Nucl Res, ATOMKI, H-4001 Debrecen, HungaryEotvos Lorand Univ, Budapest, HungaryVisva Bharati Univ, Santini Ketan, W Bengal, IndiaKing Abdulaziz Univ, Jeddah 21413, Saudi ArabiaUniv Ruhuna, Matara, Sri LankaIsfahan Univ Technol, Esfahan, IranSharif Univ Technol, Tehran, IranIslamic Azad Univ, Plasma Phys Res Ctr, Sci &Res Branch, Tehran, IranIst Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, ItalyUniv Siena, I-53100 Siena, ItalyCNRS, IN2P3, Paris, FranceUniv Michoacana, Morelia, Michoacan, MexicoSt Petersburg State Polytech Univ, St Petersburg, RussiaUniv Rome, Fac Ingn, Rome, ItalyIst Nazl Fis Nucl, Scuola Normale &Sez, Pisa, ItalyAlbert Einstein Ctr Fundamental Phys, Bern, SwitzerlandGaziosmanpasa Univ, Tokat, TurkeyAdiyaman Univ, Adiyaman, TurkeyCag Univ, Mersin, TurkeyMersin Univ, Mersin, TurkeyIzmir Inst Technol, Izmir, TurkeyOzyegin Univ, Istanbul, TurkeyMarmara Univ, Istanbul, TurkeyKafkas Univ, Kars, TurkeyMimar Sinan Univ, Istanbul, TurkeyUniv Southampton, Sch Phys &Astron, Southampton, Hants, EnglandArgonne Natl Lab, Argonne, IL 60439 USAErzincan Univ, Erzincan, TurkeyYildiz Tekn Univ, Istanbul, TurkeyTexas A&amp;M Univ, Doha, QatarUniv Estadual Paulista, Instituto de Física Teórica (IFT), Sao Paulo, BrazilEstonian Research Council, Estonia: IUT23-4Estonian Research Council, Estonia: IUT23-6MIUR (Italy): 20108T4XT

    Measurement of the triple-differential cross section for photon + jets production in proton-proton collisions at sqrt (s) = 7 TeV

    Get PDF
    A measurement of the triple-differential cross section, , in photon + jets final states using a data sample from proton-proton collisions at = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 fb(-1) collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of |eta| 30 GeV, respectively. The measurements are compared to theoretical predictions from the sherpa leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from jetphox. The predictions are found to be consistent with the data over most of the examined kinematic region.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore