103 research outputs found

    Klotho, the elusive kidney-derived anti-ageing factor

    Full text link
    Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide. Only early diagnosis will allow prevention of both CKD progression and the negative impact of CKD on all-cause and cardiovascular mortality. Klotho is a protein produced by the kidneys that has anti-ageing and phosphaturic properties, preventing excess positive phosphate balance. There is evidence that Klotho downregulation is one of the earliest consequences of kidney injury. Thus the development of reliable assays to monitor Klotho levels may allow an early diagnosis of CKD and monitoring the impact of therapies aimed at preserving Klotho expression or at preventing CKD progression. However, the performance of Klotho assays has been suboptimal so far. In this issue of Clinical Kidney Journal, Neyra et al. explore methods to improve the reliability of Klotho assays.The authors were supported by FIS PI16/02057, PI18/01366, PI19/ 00588, PI19/00815, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071), DTS18/00032, ISCIIIRETIC REDinREN RD016/0009 Fondos FEDER, Sociedad Española de Nefrología, Comunidad de Madrid B2017/BMD-3686 CIFRA2- CM and Miguel Servet MS14/00133 to MDS

    Clinical proteomics in kidney disease as an exponential technology: Heading towards the disruptive phase

    Full text link
    Exponential technologies double in power or processing speed every year, whereas their cost halves. Deception and disruption are two key stages in the development of exponential technologies. Deception occurs when, after initial introduction, technologies are dismissed as irrelevant, while they continue to progress, perhaps not as fast or with so many immediate practical applications as initially thought. Twenty years after the first publications, clinical proteomics is still not available in most hospitals and some clinicians have felt deception at unfulfilled promises. However, there are indications that clinical proteomics may be entering the disruptive phase, where, once refined, technologies disrupt established industries or procedures. In this regard, recent manuscripts in CKJ illustrate how proteomics is entering the clinical realm, with applications ranging from the identification of amyloid proteins in the pathology lab, to a new generation of urinary biomarkers for chronic kidney disease (CKD) assessment and outcome prediction. Indeed, one such panel of urinary peptidomics biomarkers, CKD273, recently received a Food and Drug Administration letter of support, the first ever in the CKD field. In addition, a must-read resource providing information on kidney disease-related proteomics and systems biology databases and how to access and use them in clinical decision-making was also recently published in CKJ.Grant support was received from: ISCIII and FEDER funds PI13/00047; EUTOX, CP12/03262, CP14/00133, PI15/00298, PI14/00386, PI15/01460, PI16/01900, PI16/02057; Diabetes Cancer Connect PIE13/00051; Sociedad Española de Nefrologia; FRIAT; and ISCIII-RETIC REDinREN RD016/009. Salary support was received from: ISCIII Miguel Servet to A.B.S., A.M.R. and M.D.S.-N.; Joan Rodes to B.F.-F; and Programa Intensificación Actividad Investigadora (ISCIII/Agencia Laín-Entralgo/CM) to A.O

    Postbiotics and Kidney Disease

    Get PDF
    Chronic kidney disease (CKD) is projected to become the fifth global cause of death by 2040 as a result of key shortcomings in the current methods available to diagnose and treat kidney diseases. In this regard, the novel holobiont concept, used to describe an individual host and its microbial community, may pave the way towards a better understanding of kidney disease pathogenesis and progression. Microbiota-modulating or -derived interventions include probiotics, prebiotics, synbiotics and postbiotics. As of 2019, the concept of postbiotics was updated by the International Scientific Association of Probiotics and Prebiotics (ISAPP) to refer to preparations of inanimate microorganisms and/or their components that confer a health benefit to the host. By explicitly excluding purified metabolites without a cellular biomass, any literature making use of such term is potentially rendered obsolete. We now review the revised concept of postbiotics concerning their potential clinical applications and research in kidney disease, by discussing in detail several formulations that are undergoing preclinical development such as GABA-salt for diet-induced hypertension and kidney injury, sonicated Lactobacillus paracasei in high fat diet-induced kidney injury, GABA-salt, lacto-GABA-salt and postbiotic-GABA-salt in acute kidney injury, and O. formigenes lysates for hyperoxaluria. Furthermore, we provide a roadmap for postbiotics research in kidney disease to expedite clinical translation

    The role of PGC-1α and mitochondrial biogenesis in kidney diseases

    Full text link
    Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.Supported by ISCIII-FIS, FEDER funds, CP14/00133, PI16/02057, PI16/01900, PI18/01366, PI19/00588, PI19/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD016/0009, Sociedad Española de Nefrología, Fundacion Renal Iñigo Álvarez de Toledo (FRIAT), ISCIII Miguel Servet (A.B.S., M.D.S.-N.), ISCIII Sara Borrell (J.M.M.-M.), Comunidad de Madrid CIFRA2 B2017/BMD-3686 (M.F.-B. and D.M.-S.

    Phosphate, microbiota and ckd

    Full text link
    Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney disease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventu-ally, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed. Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus, parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial production of the short-chain fatty acid butyrate. We review current knowledge on the relationship between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota, the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to treat CKD-MBD through the clinical translation of concepts from other fields of science such as the optimization of phosphorus utilization and the use of phosphate-accumulating organisms.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 860329, FIS/Fondos FEDER (PI18/01366, PI20/00744, PI19/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD016/0009), Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina B2017/BMD-3686 CIFRA2-C

    Mitogen-Activated Protein Kinase 14 Promotes AKI

    Get PDF
    An improved understanding of pathogenic pathways may identify novel acute kidney injury (AKI) therapeutic approaches. Unbiased LC-MS/MS protein expression profiling combined with focused data mining identified MAP3K14 and non-canonical NFκB activation at the crossroads of the enriched pathways MAPK, ubiquitin-mediated proteolysis, chemokines, NFκB and apoptosis in the kidney cortex of experimental toxic AKI. In AKI the upstream kinase MAP3K14, the NFκB DNA binding heterodimer RelB/NFκB2, and proteins involved in NFκB2 p100 ubiquitination and proteasomal processing to p52, such as Ube2m and cullin1 were up-regulated. Immunohistochemistry localized MAP3K14 expression to tubular cells in experimental and human AKI. In vivo evidence of MAP3K14 activation in experimental folic acid-induced AKI consisted of NFκB2 p100 processing to p52, nuclear location and DNA binding of RelB and NFκB2. MAP3K14 activity-deficient aly/aly mice were protected from kidney dysfunction, inflammation and apoptosis in AKI induced by folic acid and from lethality in cisplatin-induced AKI. MAP3K14 siRNA targeting in cultured tubular cells decreased inflammation and cell death. Bone marrow transplantation experiments where consistent with a protective effect of renal cell MAP3K14 targeting. Cell culture and in vivo studies identified chemokines MCP-1, RANTES and CXCL10 as MAP3K14 targets in tubular cells, thus identifying potential mediators of the deleterious effect of MAP3K14 in kidney injury. In conclusion, MAP3K14 promotes kidney injury through promotion of inflammation and cell death and is a promising novel therapeutic target

    TWEAK promotes peritoneal inflammation

    Full text link
    Peritoneal dialysis (PD) is complicated by peritonitis episodes that cause loss of mesothelium and eventually sclerosing peritonitis. An improved understanding of the molecular contributors to peritoneal injury and defense may increase the therapeutic armamentarium to optimize peritoneal defenses while minimizing peritoneal injury. There is no information on the expression and function of the cytokine TWEAK and its receptor Fn14 during peritoneal injury. Fn14 expression and soluble TWEAK levels were measured in human PD peritoneal effluent cells or fluids with or without peritonitis. Fn14 expression was also analyzed in peritoneal biopsies from PD patients. Actions of intraperitoneal TWEAK were studied in mice in vivo. sTWEAK levels were increased in peritoneal effluent in PD peritonitis. Effluent sTWEAK levels correlated with the number of peritoneal macrophages (r = 0.491, p = 0.002). Potential TWEAK targets that express the receptor Fn14 include mesothelial cells and macrophages, as demonstrated by flow cytometry of peritoneal effluents and by analysis of peritoneal biopsies. Peritoneal biopsy Fn14 correlated with mesothelial injury, fibrosis and inflammation, suggesting a potential deleterious effect of TWEAK/Fn14. In this regard, intraperitoneal TWEAK administration to mice promoted peritoneal inflammation characterized by increased peritoneal effluent MCP-1, Fn14 and Gr1+ macrophages, increased mesothelial Fn14, MCP-1 and CCL21 expression and submesothelial tissue macrophage recruitment. Taken together these data suggest that the TWEAK/Fn14 system may promote inflammation and tissue injury during peritonitis and PD.This work was supported by FIS PS09/00447, PI08/1564, PI10/00234, MS12/03262, FEDER funds ISCIII-RETIC REDinREN/RD06/0016, RD12/0021, Comunidad de Madrid (Fibroteam S2010/BMD-2321, S2010/BMD-2378). Programa Intensificación Actividad Investigadora (ISCIII/Agencia Laı´n-Entralgo/CM) to AO, Programa Estabilizacio´n Investigadores to LB-C, Miguel Servet to ABS, Sara Borrell to BS, MDSN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies?

    Get PDF
    Chronic kidney disease (CKD) is a prevalent cause of morbidity and mortality worldwide. A hallmark of CKD progression is renal fibrosis characterized by excessive accumulation of extracellular matrix (ECM) proteins. In this study, we aimed to investigate the correlation of the urinary proteome classifier CKD273 and individual urinary peptides with the degree of fibrosis. In total, 42 kidney biopsies and urine samples were examined. The percentage of fibrosis per total tissue area was assessed in Masson trichrome stained kidney tissues. The urinary proteome was analysed by capillary electrophoresis coupled to mass spectrometry. CKD273 displayed a significant and positive correlation with the degree of fibrosis (Rho = 0.430, P = 0.0044), while the routinely used parameters (glomerular filtration rate, urine albumin-to-creatinine ratio and urine protein-to-creatinine ratio) did not (Rho = -0.222; -0.137; -0.070 and P = 0.16; 0.39; 0.66, respectively). We identified seven fibrosis-associated peptides displaying a significant and negative correlation with the degree of fibrosis. All peptides were collagen fragments, suggesting that these may be causally related to the observed accumulation of ECM in the kidneys. CKD273 and specific peptides are significantly associated with kidney fibrosis; such an association could not be detected by other biomarkers for CKD. These non-invasive fibrosis-related biomarkers can potentially be implemented in future trials

    The burden of disease in Greece, health loss, risk factors, and health financing, 2000–16:an analysis of the Global Burden of Disease Study 2016

    Get PDF
    Background: Following the economic crisis in Greece in 2010, the country's ongoing austerity measures include a substantial contraction of health-care expenditure, with reports of subsequent negative health consequences. A comprehensive evaluation of mortality and morbidity is required to understand the current challenges of public health in Greece. Methods: We used the results of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 to describe the patterns of death and disability among those living in Greece from 2000 to 2010 (pre-austerity) and 2010 to 2016 (post-austerity), and compared trends in health outcomes and health expenditure to those in Cyprus and western Europe. We estimated all-cause mortality from vital registration data, and we calculated cause-specific deaths and years of life lost. Age-standardised mortality rates were compared using the annualised rate of change (ARC). Mortality risk factors were assessed using a comparative risk assessment framework for 84 risk factors and clusters to calculative summary exposure values and population attributable fraction statistics. We assessed the association between trends in total, government, out-of-pocket, and prepaid public health expenditure and all-cause mortality with a segmented correlation analysis

    Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe
    corecore