258 research outputs found

    Transduction‐Specific ATLAS Reveals a Cohort of Highly Active L 1 Retrotransposons in Human Populations

    Full text link
    L ong IN terspersed E lement‐1 ( LINE ‐1 or L 1) retrotransposons are the only autonomously active transposable elements in the human genome. The average human genome contains ∌80–100 active L1s, but only a subset of these L1s are highly active or ‘hot’. Human L1s are closely related in sequence, making it difficult to decipher progenitor/offspring relationships using traditional phylogenetic methods. However, L1 m RNA s can sometimes bypass their own polyadenylation signal and instead utilize fortuitous polyadenylation signals in 3â€Č flanking genomic DNA . Retrotransposition of the resultant m RNA s then results in lineage specific sequence “tags” (i.e., 3â€Č transductions) that mark the descendants of active L1 progenitors. Here, we developed a method (Transduction‐Specific Amplification Typing of L1 Active Subfamilies or TS ‐ ATLAS ) that exploits L1 3â€Č transductions to identify active L1 lineages in a genome‐wide context. TS ‐ ATLAS enabled the characterization of a putative active progenitor of one L1 lineage that includes the disease causing L1 insertion L1 RP , and the identification of new retrotransposition events within two other “hot” L1 lineages. Intriguingly, the analysis of the newly discovered transduction lineage members suggests that L1 polyadenylation, even within a lineage, is highly stochastic. Thus, TS ‐ ATLAS provides a new tool to explore the dynamics of L1 lineage evolution and retrotransposon biology. Long INterspersed Element‐1 (L1) retrotransposons are the only independently mobile elements in the human genome. We developed Transduction‐Specific Amplification Typing of L1 Active Subfamilies (TS‐ATLAS), which utilizes L1‐transduced genomic sequences, to identify a subset of highly active L1s genome‐wide. TS‐ATLAS enabled the characterization of the putative progenitor of an active disease‐causing L1 lineage, and identified new retrotransposition events within two other “hot” L1 lineages.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98809/1/humu22327.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98809/2/humu22327-sup-0001-si.pd

    Gene expression in the phenotypically plastic Arctic charr (Salvelinus alpinus): A focus on growth and ossification at early stages of development

    Get PDF
    Publisher's version (Ăștgefin grein)Gene expression during development shapes the phenotypes of individuals. Although embryonic gene expression can have lasting effects on developmental trajectories, few studies consider the role of maternal effects, such as egg size, on gene expression. Using qPCR, we characterize relative expression of 14 growth and/or skeletal promoting genes across embryonic development in Arctic charr (Salvelinus alpinus). We test to what extent their relative expression is correlated with egg size and size at early life‐stages within the study population. We predict smaller individuals to have higher expression of growth and skeletal promoting genes, due to less maternal resources (i.e., yolk) and prioritization of energy toward ossification. We found expression levels to vary across developmental stages and only three genes (Mmp9, Star, and Sgk1) correlated with individual size at a given developmental stage. Contrary to our hypothesis, expression of Mmp9 and Star showed a non‐linear relationship with size (at post fertilization and hatching, respectively), whilst Sgk1 was higher in larger embryos at hatching. Interestingly, these genes are also associated with craniofacial divergence of Arctic charr morphs. Our results indicate that early life‐stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.We thank John Postlethwait for his valuable comments on the manuscript. This research was funded by the Icelandic Research Fund, Rannis (grant number 141360 to CAL et al., and grant number 173814–051 to SVB).Peer Reviewe

    Downstream migration success of Atlantic salmon smolts in a river catchment highly fragmented by hydroelectric impoundments

    Get PDF
    Riverine habitat fragmentation by barriers, including impoundments, is common and their effects on obligate aquatic organisms are manifold. Organisms, such as Atlantic salmon (Salmo salar), that make extensive river migrations are particularly vulnerable to the effects of impoundments. In this study, we use acoustic telemetry to examine the migratory behaviour of Atlantic salmon, as they migrate to sea for the first time as juvenile ‘smolts’, in a river with a series of dams that form a complex hydropower scheme. We demonstrate that overall migration success in the River Dee catchment and particularly through standing waters was remarkably high. We speculate that high migration success in standing waters could be due to relative current speeds providing good quality directional cues to migrants. Migration success past the two dams in this study, was relatively high, although the number of unsuccessful passage attempts before a successful passage was also very high. The vast majority of smolts passed the dams when the turbines were operational. At one dam, smolts did not use an available fish pass but migrated through the generating turbines. These findings provide several routes through which generation could be managed to enhance the success of downstream smolt migration in rivers where there are similar patterns of hydrogeneration in place

    Revealing the mechanism of how cardiac myosin-binding protein C N-terminal fragments sensitize thin filaments for myosin binding

    Get PDF
    Cardiac muscle contraction is triggered by calcium binding to troponin. The consequent movement of tropomyosin permits myosin binding to actin, generating force. Cardiac myosin-binding protein C (cMyBP-C) plays a modulatory role in this activation process. One potential mechanism for the N-terminal domains of cMyBP-C to achieve this is by binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently labeled cMyBP-C N-terminal fragments and GFP-labeled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single-molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound in clusters, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that involves a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium, thus enhancing myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility

    BAF complex maintains glioma stem cells in pediatric H3K27M glioma

    Get PDF
    Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell–like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. Significance: Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1–BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma

    Inshore and offshore marine migration pathways of Atlantic salmon post-smolts from multiple rivers in Scotland, England, Northern Ireland and Ireland

    Get PDF
    The migratory behavior of Atlantic salmon (Salmo salar) post-smolts in coastal waters is poorly understood. In this collaborative study, 1914 smolts, from 25 rivers, in four countries were tagged with acoustic transmitters during a single seasonal migration. In total, 1105 post-smolts entered the marine study areas and 438 (39.6%) were detected on a network of 414 marine acoustic receivers and an autonomous underwater vehicle. Migration pathways (defined as the shortest distance between two detections) of up to 575 km and over 100 days at sea were described for all 25 populations. Post-smolts from different rivers, as well as individuals from the same river, used different pathways in coastal waters. Although difficult to generalize to all rivers, at least during the year of this study, no tagged post-smolts from rivers draining into the Irish Sea were detected entering the areas of sea between the Hebrides and mainland Scotland, which is associated with a high density of finfish aquaculture. An important outcome of this study is that a high proportion of post-smolts crossed through multiple legislative jurisdictions and boundaries during their migration. This study provides the basis for spatially explicit assessment of the impact risk of coastal pressures on salmon during their first migration to sea

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≄ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • 

    corecore