2,177 research outputs found

    New hints towards a precision medicine strategy for IDH wild-type glioblastoma.

    Get PDF
    Glioblastoma represents the most common primary malignancy of the central nervous system in adults and remains a largely incurable disease. The elucidation of disease subtypes based on mutational profiling, gene expression and DNA methylation has so far failed to translate into improved clinical outcomes. However, new knowledge emerging from the subtyping effort in the IDH-wild-type setting may provide directions for future precision therapies. Here, we review recent learnings in the field, and further consider how tumour microenvironment differences across subtypes may reveal novel contexts of vulnerability. We discuss recent treatment approaches and ongoing trials in the IDH-wild-type glioblastoma setting, and propose an integrated discovery stratagem incorporating multi-omics, single-cell technologies and computational approaches

    Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth

    Get PDF
    Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully-formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg-model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally-observed adhesion-driven contact inhibition of chemotaxis in the simulation causes randomly-distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.Comment: Thoroughly revised version, now in press in PLoS Computational Biology. 53 pages, 13 figures, 2 supporting figures, 56 supporting movies, source code and parameters files for computer simulations provided. Supporting information: http://www.psb.ugent.be/~romer/ploscompbiol/ Source code: http://sourceforge.net/projects/tst

    Connective tissue growth factor is induced in bleomycin-induced skin scleroderma

    Get PDF
    The origin of fibrotic cells within connective tissue is unclear. For example, the extent to which microvascular pericytes contribute to the number of myofibroblasts present in dermal fibrosis in uncertain. Connective tissue growth factor (CTGF/CCN2) is a marker and mediator of fibrosis. In this report, we use an antibody recognizing CCN2 to assess the cell types in mouse dermis which express CCN2 in the bleomycin model of skin scleroderma. Control (PBS injected) and fibrotic (bleomycin-injected) dermis was examined for CCN2, α-smooth muscle actin (α-SMA) (to detect myofibroblasts), and NG2 (to detect pericytes) expression. Consistent with previously published data, CCN2 expression was largely absent in the dermis of control mice. However, upon exposure to bleomycin, CCN2 was observed in the dermis. Cells that expressed CCN2 were α−SMA-expressing myofibroblasts. Approximately 85% of myofibroblasts were NG2-positive, CCN2-expressing pericytes, indicating that pericytes significantly contributed to the presence of myofibroblasts in sclerotic dermis. Thus CCN2 is induced in fibrotic skin, correlating with the induction of myofibroblast induction. Moreover, CCN2-expressing pericytes significantly contribute to the appearance of myofibroblasts in bleomycin-induced skin scleroderma

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
    corecore